若函數(shù)y=f(x)的圖象與y=x+
1
x
的圖象關(guān)于x=1軸對稱,則f(x)=
 
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)的圖象與函數(shù)y=x+
1
x
的圖象關(guān)于x=1對稱,故在函數(shù)y=f(x)的圖象上任取(x,y),則點(x,y)關(guān)于x=1對稱的點為(2-x,y)在y=x+
1
x
的圖象上,代入即可得到答案.
解答: 解:在函數(shù)y=f(x)的圖象上任。▁,y),∵點(x,y)關(guān)于x=1對稱的點為(2-x,y),
∴(2-x,y)在y=x+
1
x
的圖象上,所以y=2-x+
1
2-x

∴f(x)=2-x+
1
2-x
,
故答案為:2-x+
1
2-x
點評:本題考查了函數(shù)圖象的對稱性與函數(shù)解析式的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1中,底面ABC是邊長為2的正三角形,側(cè)棱長為
3
,側(cè)棱CC1⊥底面ABC,D是AC的中點.
(1)求證:AB1∥平面BC1D;
(2)求二面角D-BC1-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=2,d=1,{bn}是以1為首項,2為公比的等比數(shù)列,則ab1+ab2+…+ab10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中底面ABCD是平行四邊形,AB⊥AC,AC⊥PB,E為PD上一點,PE=
1
2
PD,求證:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,右焦點為F(1,0).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)若過點F且傾斜角為
π
4
 的直線與此橢圓相交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率
1
2
,其左焦點到點P(2,1)的距離為
10
,過左焦點作直線OP的垂線l交橢圓C于A,B兩點.
(1)求橢圓C的方程;
(2)求△ABP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

好利來蛋糕店某種蛋糕每個成本為6元,每個售價為x(6<x<11)元,該蛋糕年銷售量為m萬個,若已知
585
8
-m
(x-
21
4
)2
成正比,且售價為10元時,年銷售量為28萬個.
(1)求該蛋糕年銷售利潤y關(guān)于售價x的函數(shù)關(guān)系式;
(2)求售價為多少時,該蛋糕的年利潤最大,并求出最大年利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD是正方形,E,F(xiàn)分別是AB,PD的中點,且PA=AB=2.
(1)求證:PB∥平面AFC;
(2)求點E到平面FAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在可行域內(nèi)任取一點,如框圖所示進(jìn)行操作,則能輸出數(shù)對(x,y)的概率是( 。
A、
1
4
B、
π
4
C、
π
8
D、
1
8

查看答案和解析>>

同步練習(xí)冊答案