【題目】已知函數(shù)f(x)=|mx|﹣|x﹣n|(0<n<1+m),若關(guān)于x的不等式f(x)<0的解集中的整數(shù)恰有3個,則實(shí)數(shù)m的取值范圍為(
A.3<m<6
B.1<m<3
C.0<m<1
D.﹣1<m<0

【答案】B
【解析】解:∵f(x)=|mx|﹣|x﹣n|<0,即|mx|<|x﹣n|,
∴(mx)2﹣(x﹣n)2<0,即[(m﹣1)x+n][(m+1)x﹣n]<0,
由題意:m+1>0,f(x)<0的解集中的整數(shù)恰好有3個,
可知必有m﹣1>0,即m>1,(否則解集中的整數(shù)不止3個)
故不等式的解為 ,
∵0<n<1+m,∴ ,
所以解集中的整數(shù)恰好有3個當(dāng)且僅當(dāng) ,
即2(m﹣1)<n≤3(m﹣1),
又n<1+m,所以2(m﹣1)<n<1+m,即2(m﹣1)<1+m,解得m<3,
從而1<m<3,
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x| ≤( x1≤9},集合B={x|log2x<3},集合C={x|x2﹣(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(UB)∪A;
(2)若A∪C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓 的離心率為 分別為橢圓的左、右頂點(diǎn), 為右焦點(diǎn),直線的交點(diǎn)到軸的距離為,過點(diǎn)軸的垂線 上異于點(diǎn)的一點(diǎn),以為直徑作圓.

(1)求的方程;

(2)若直線的另一個交點(diǎn)為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為,( 為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),若點(diǎn)是直線上一動點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓上的動點(diǎn),過點(diǎn)軸的垂線段, 為垂足,點(diǎn)滿足.

(Ⅰ)求動點(diǎn)的軌跡的方程;

(Ⅱ)若兩點(diǎn)分別為橢圓的左右頂點(diǎn), 為橢圓的左焦點(diǎn),直線與橢圓交于點(diǎn),直線的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式2x2﹣2axy+y2≥0對任意x∈[1,2]及任意y∈[1,4]恒成立,則實(shí)數(shù)a取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若,證明: 上存在唯一零點(diǎn);

(2)設(shè)函數(shù),( 表示中的較小值),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件,求圓的方程
(1)求經(jīng)過兩點(diǎn) ,且圓心在y軸上的圓的方程;
(2)圓的的半徑為1,圓心與點(diǎn)(1,0)關(guān)于 對稱的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案