如圖,已知橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的右焦點(diǎn)為F(c,0),下頂點(diǎn)為A(0,-b),直線AF與橢圓的右準(zhǔn)線交于點(diǎn)B,與橢圓的另一個(gè)交點(diǎn)為點(diǎn)C,若F恰好為線段AB的中點(diǎn).
(1)求橢圓的離心率;
(2)若FC=數(shù)學(xué)公式,求橢圓的方程.

解(1)因?yàn)锽在右準(zhǔn)線上,且F恰好為線段AB的中點(diǎn),所以2c=,…(2分)
=,所以橢圓的離心率e=…(4分)
(2)由(1)知a=c,b=c,所以直線AB的方程為y=x-c,
設(shè)C(x0,x0-c),因?yàn)辄c(diǎn)C在橢圓上,所以+=1,…(6分)
+2(x0-c)2=2c2,
解得x0=0(舍去),x0=c.
所以C為(c,c),…(8分)
因?yàn)镕C=,由兩點(diǎn)距離公式可得(c-c)2+(c)2=
解得c2=2,所以a=2,b=,
所以此橢圓的方程為+=1. …(10分)
分析:(1)依題意,可求得2c=,從而可求得橢圓的離心率;
(2)由(1)可知直線AB的方程為y=x-c,設(shè)C(x0,x0-c),將其代入橢圓方程,可求得x0,利用兩點(diǎn)間的距離公式表示出FC=,可求得c,從而可求得橢圓的方程.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì)(求離心率),考查橢圓的標(biāo)準(zhǔn)方程,著重考查方程思想與化歸思想的綜合應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

素材1:如圖,已知橢圓 =1(2≤m≤5),過其左焦點(diǎn)且斜率為1的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)锳、B、C、D;

素材2:設(shè)f(m)=||AB|-|CD||.

試根據(jù)上述素材構(gòu)建一個(gè)問題,然后再解答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓=1(2≤m≤5),過其左焦點(diǎn)且斜率為1的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)?i>A、B、C、D,設(shè)f(m)=||AB|-|CD||

(1)求f(m)的解析式;

(2)求f(m)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期11月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分15分)

如圖,已知橢圓=1(2≤m≤5),過其左焦點(diǎn)且斜率為1的直線與橢圓及直線的交點(diǎn)從左到右的順序?yàn)?i>A、BC、D,設(shè)

(Ⅰ)求的解析式;

(Ⅱ)求的最值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:解答題

(12分)如圖,已知橢圓=1(a>b>0)過點(diǎn)(1,),離心率為,左、右焦點(diǎn)分別為F1、F2. 點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2, 證明:=2;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案