函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只要將f(x)的圖象(  )
A、向右平移
π
6
個(gè)單位長(zhǎng)度
B、向右平移
π
12
個(gè)單位長(zhǎng)度
C、向左平移
π
6
個(gè)單位長(zhǎng)度
D、向左平移
π
12
個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先根據(jù)函數(shù)的圖象現(xiàn)確定函數(shù)解析式,進(jìn)一步利用平移變換求出結(jié)果.
解答: 解:根據(jù)函數(shù)的圖象:A=1
T
4
=
12
-
π
3

解得:T=π
則:ω=2
當(dāng)x=
π
3
時(shí)
,f(
π
3
)=sin(
3
+φ)=0
解得:φ=
π
3

所以:f(x)=sin(2x+
π
3

要得到g(x)=sin2x的圖象只需將函數(shù)圖象向右平移
π
6
個(gè)單位即可.
故選:A
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):函數(shù)圖象的平移變換,函數(shù)解析式的求法.屬于基礎(chǔ)題型
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a
2
x2+(a+b)x+c(a,b,c∈R)的兩個(gè)極值點(diǎn)分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),z=2a-b,則z的取值范圍是(  )
A、(-∞,3]
B、(-∞,-3)
C、[-3,+∞)
D、(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
4
)=
1
2
,α∈(
π
2
,π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=-x3-2x2-4x+5的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
的方向是東南方向,且|
AB
|=4,則向量-2
AB
的方向是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
2
3
4
1
2
32-
1
2
4
5
8
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={2,4,6,8,10},B={1,9,25,49,81,100},下面的對(duì)應(yīng)關(guān)系能構(gòu)成從A到B的映射的是( 。
A、f:x→(2x-1)2
B、f:x→(2x-3)2
C、f:x→x2-2x-1
D、f:x→(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線與直線y=
1
2
x+1平行,則它的離心率為( 。
A、
5
B、
6
C、
6
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線x2=y焦點(diǎn)的直線l交拋物線于A、B兩點(diǎn),且|AB|=4,則線段AB中點(diǎn)到x軸的距離是(  )
A、1
B、
3
2
C、
7
4
D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案