已知sin(α+
π
4
)=
1
2
,α∈(
π
2
,π),求sin2α,cos2α,tan2α的值.
考點:二倍角的正弦,二倍角的余弦
專題:三角函數(shù)的求值
分析:利用已知條件直接求出角α的值,然后利用特殊角的三角函數(shù)求值即可.
解答: 解:sin(α+
π
4
)=
1
2
,α∈(
π
2
,π),
∴α+
π
4
=
6
,解得α=
12

∴sin2α=sin
6
=-
1
2

cos2α=cos
6
=-
3
2
,
tan2α=tan
6
=
3
3
點評:本題考查三角函數(shù)的化簡求值,特殊角的三角函數(shù)值的求法,誘導(dǎo)公式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的兩個端點A,B分別在x軸和y軸上滑動,|AB|=4,點C在線段AB上且BC=3CA,求點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次象棋比賽的決賽在甲乙兩名棋手之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往經(jīng)驗,每局甲贏的概率為
1
2
,乙贏的概率為
1
3
,且每局比賽輸贏互不影響.若甲第n局的得分記為an,令Sn=a1+a2+…+an
(Ⅰ)求S3=5的概率;
(Ⅱ)若規(guī)定:當其中一方的積分達到或超過4分時,比賽結(jié)束,否則,繼續(xù)進行.設(shè)隨機變量ξ表示此次比賽共進行的局數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4px(p>0)上的動點M到定點A(1,0)的距離|MA|達到最小值時點M的位置記為M′,且|M′A|<1,(1)求p的取值范圍 
(2)求點M′的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C的圓心C(2,2),過原點O的直線y=kx與圓C相交于P,Q兩點,且
OP
OQ
=6,則圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面內(nèi)一點,且滿足
AP
=
1
3
AC
+
2
3
AB
,則△APB的面積與△APC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
1
5
,α∈(0,π),則
1
tanα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只要將f(x)的圖象( 。
A、向右平移
π
6
個單位長度
B、向右平移
π
12
個單位長度
C、向左平移
π
6
個單位長度
D、向左平移
π
12
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1=
1
2
an+n(n為奇數(shù))
an-2n(n為偶數(shù))
;
(1)a2,a3,a4,a5
(2)設(shè)bn=a2n-2,求證數(shù)列{bn}是等比數(shù)列;
(3)在(2)條件下,求證數(shù)列{an}前100項中的所有偶數(shù)項的和.

查看答案和解析>>

同步練習(xí)冊答案