【題目】在正方體AC1中,E,F分別為D1C1,B1C1的中點(diǎn),AC∩BD=P,A1C1∩EF=Q,如圖.
(1)若A1C交平面EFBD于點(diǎn)R,證明:P,Q,R三點(diǎn)共線.
(2)線段AC上是否存在點(diǎn)M,使得平面B1D1M∥平面EFBD,若存在確定M的位置,若不存在說(shuō)明理由.
【答案】(1)證明見解析(2)存在;M為AP中點(diǎn)
【解析】
根據(jù)題意,證明P,Q,R是平面BDEF和平面BDD1B1的公共點(diǎn),利用平面的公理3即可得證;
存在點(diǎn)M為AP中點(diǎn), 使平面B1D1M∥平面EFBD.取AD中點(diǎn)G,AB中點(diǎn)H,連結(jié)GH,交AC于點(diǎn)M,連結(jié)D1G,B1H,利用線面平行的判定定理證明平面,平面,由面面平行的判定定理即可得證.
(1)證明:∵在正方體AC1中,E,F分別為D1C1,B1C1的中點(diǎn),
AC∩BD=P,A1C1∩EF=Q,A1C交平面EFBD于點(diǎn)R,
∴P,Q,R是平面BDEF和平面BDD1B1的公共點(diǎn),
∴P,Q,R三點(diǎn)共線.
(2)存在點(diǎn)M為AP中點(diǎn), 使平面B1D1M∥平面EFBD.
證明如下:取AD中點(diǎn)G,AB中點(diǎn)H,連結(jié)GH,交AC于點(diǎn)M,連結(jié)D1G,B1H,如圖:
由題意得,GH∥EF,因?yàn)?/span>平面,平面,
所以平面,
因?yàn)?/span>B1H∥DE,同理可證,平面,
又因?yàn)?/span>, 由面面平行的判定定理可得,
∴平面GHB1D1∥平面BDEF,
∴線段AC上存在點(diǎn)M,使得平面B1D1M∥平面EFBD,且M為AP中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線C:y2=2px(p>0)的準(zhǔn)線l上的點(diǎn)M(﹣1,0)的直線l1交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若|MA||MB|=λ|OP|2,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過(guò)點(diǎn)P(1,2),傾斜角α= .
(1)寫出圓C的普通方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若有兩個(gè)零點(diǎn),求a的取值范圍;
(2)設(shè),,直線的斜率為k,若恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空間四邊形ABCD的對(duì)棱AD,BC成60°的角,且AD=a,BC=b,平行于AD與BC的截面分別交AB,AC,CD,BD于E、F、G、H,則截面EFGH面積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個(gè)粽子,其中豆沙粽個(gè),肉粽個(gè),白粽個(gè),這三種粽子的外觀完全相同,從中任意選取個(gè).
()求三種粽子各取到個(gè)的概率.
()設(shè)表示取到的豆沙粽個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,E是棱PC上的一點(diǎn).
(1)證明:平面平面 .
(2)若,F(xiàn)是PB的中點(diǎn),,,求直線DF與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說(shuō)明殘差平方和越大;
②對(duì)于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越;
③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過(guò)點(diǎn);
④是用來(lái)判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對(duì)于兩個(gè)分類變量適合;
以上幾種說(shuō)法正確的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)若函數(shù) 在區(qū)間 內(nèi)恰有兩個(gè)零點(diǎn),求 的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com