在區(qū)間[0,6]上隨機取一個數(shù)x,log2x的值介于0到2之間的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:本題利用幾何概型求概率.先解對數(shù)不等式0≤log2x≤2,再利用解得的區(qū)間長度與區(qū)間[0,6]的長度求比值即得.
解答:利用幾何概型,其測度為線段的長度.
∵0≤log2x≤2得1≤x≤4,
∴l(xiāng)og2x的值介于0到2之間的概率為:
P(log2x的值介于0到2之間)==
故選A.
點評:本題主要考查了幾何概型,簡單地說,如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=2x+
8
x
-3,x∈(0,+∞)上的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 14 7 5.34 5.11 5.01 5 5.01 5.04 5.08 5.67 7 8.6 12.14
(1)觀察表中y值隨x值變化趨勢特點,請你直接寫出函數(shù)f(x)=2x+
8
x
-3,x∈(0,+∞)的單調(diào)區(qū)間,并指出當(dāng)x取何值時函數(shù)的最小值為多少;
(2)用單調(diào)性定義證明函數(shù)f(x)=2x+
8
x
-3在(0,2)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a

在探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x)在[0,+∞)(a=1)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)寫出函數(shù)f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=2x+
8
x
,x∈(0,+∞)
的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 16 10 8.34 8.1 8.01 8 8.01 8.04 8.08 8.6 10 11.6 15.14
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)f(x)=2x+
8
x
(x>0)
在區(qū)間(0,2)上遞減;函數(shù)f(x)=2x+
8
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當(dāng)x=
2
2
時,y最小=
4
4

(2)證明:函數(shù)f(x)=2x+
8
x
(x>0)
在區(qū)間(0,2)遞減.
(3)思考:函數(shù)f(x)=2x+
8
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域為(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=2x+
8
x
-3在區(qū)間(0,+∞)上的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 14 7 5.33 5.11 5.01 5 5.01 5.04 5.08 5.67 7 8.6 12.14
(1)觀察表中y值隨x值變化趨勢的特點,請你直接寫出函數(shù)f(x)=2x+
8
x
-3在區(qū)間(0,+∞)上的單調(diào)區(qū)間,并指出f(x)的最小值及此時x的值.
(2)用單調(diào)性的定義證明函數(shù)f(x)=2x+
8
x
-3在區(qū)間(0,2]上的單調(diào)性;
(3)設(shè)函數(shù)f(x)=2x+
8
x
-3在區(qū)間(0,a]上的最小值為g(a),求g(a)的表達式.

查看答案和解析>>

同步練習(xí)冊答案