已知直線(xiàn)L:x-2y-5=0與圓C:x2+y2=50.求:
(1)交點(diǎn)A,B的坐標(biāo);(2)△AOB的面積
(1)A,B的坐標(biāo)為(-5,-5),(7,1)
(2)15
解析試題分析:.解:(1)直線(xiàn)L:x-2y-5=0與圓C:x2+y2=50.的交點(diǎn)即下列方程組的解
x-2y-5=0 解方程組得:x=-5 x=7
x2+y2=50 y=-5 y=1
所以交點(diǎn)A,B的坐標(biāo)為(-5,-5),(7,1)
(2)設(shè)直線(xiàn)L:x-2y-5=0與x軸的交點(diǎn)為E,則E(5,0)
S△AOB= S△AOE +S△EOB
=|yA||OE|+|yB||OE|
=(|yA|+|yB|)|OE|
=×6×5=15
考點(diǎn):直線(xiàn)與圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了直線(xiàn)與圓的位置關(guān)系以及三角形面積的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率。它有一個(gè)頂點(diǎn)恰好是拋物線(xiàn)=4y的焦點(diǎn)。過(guò)該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長(zhǎng)線(xiàn)上,且。
(Ⅰ)求動(dòng)點(diǎn)C的軌跡E的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為A,B,直線(xiàn)AC(C點(diǎn)不同于A,B)與直線(xiàn)交于點(diǎn)R,D為線(xiàn)段RB的中點(diǎn)。試判斷直線(xiàn)CD與曲線(xiàn)E的位置關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓O的直徑AB=4,定直線(xiàn)L到圓心的距離為4,且直線(xiàn)L⊥直線(xiàn)AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線(xiàn)PA、PB分別交L與M、N點(diǎn)。
試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決下列問(wèn)題:
(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線(xiàn)長(zhǎng)與|MQ|的比等于常數(shù)λ(λ>0).求動(dòng)點(diǎn)M的軌跡方程,說(shuō)明它表示什么曲線(xiàn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓,直線(xiàn)與圓相交于兩點(diǎn),且A點(diǎn)在第一象限.
(1)求;
(2)設(shè)()是圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,如果直線(xiàn)與軸分別交于和.問(wèn)是否為定值?若是,求出定值,若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓及點(diǎn).
(1)在圓上,求線(xiàn)段的長(zhǎng)及直線(xiàn)的斜率;
(2)若為圓上任一點(diǎn),求的最大值和最小值;
(3)若實(shí)數(shù)滿(mǎn)足,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
圓內(nèi)有一點(diǎn),為過(guò)點(diǎn)且傾斜角為的弦,
(1)當(dāng)=時(shí),求的長(zhǎng);
(2)當(dāng)弦被點(diǎn)平分時(shí),寫(xiě)出直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓,直線(xiàn).
(Ⅰ)若與相切,求的值;
(Ⅱ)是否存在值,使得與相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),若存在,求出,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程是,曲線(xiàn)的參數(shù)方程是
是參數(shù)).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的普通方程;
(2)求的取值范圍,使得,沒(méi)有公共點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com