【題目】濟(jì)南泉城廣場(chǎng)上的泉標(biāo)模仿的是隸書字,其造型流暢別致,成了濟(jì)南的標(biāo)志和象征.李明同學(xué)想測(cè)量泉標(biāo)的高度,于是他在廣場(chǎng)的A點(diǎn)測(cè)得泉標(biāo)頂端的仰角為60°,他又沿著泉標(biāo)底部方向前進(jìn)15.2 m,到達(dá)B點(diǎn),又測(cè)得泉標(biāo)頂部仰角為80°.你能幫助李明同學(xué)求出泉標(biāo)的高度嗎?(精確到1 m)

【答案】38 m

【解析】

抽象出題意中所給的幾何關(guān)系畫圖,再利用三角形中的角度關(guān)系與正弦定理求解即可.

如圖所示,點(diǎn)C,D分別為泉標(biāo)的底部和頂端.

依題意,∠BAD60°,∠CBD80°,AB15.2 m,

則∠ABD100°,故∠ADB180°(60°100°)20°.

在△ABD中,根據(jù)正弦定理,.

.

RtBCD中,CDBDsin 80°38.5×sin 80°≈38(m),即泉城廣場(chǎng)上泉標(biāo)的高約為38 m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)倒圓錐形容器,它的軸截面是一個(gè)正三角形,在容器內(nèi)放一個(gè)半徑為的鐵球,并注入水,使水面與球正好相切,然后將球取出,則這時(shí)容器中水的深度為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個(gè)數(shù),,…,的連乘積記為,將個(gè)數(shù),,…,的和記為.(

(1)若數(shù)列滿足,,,設(shè),,求;

(2)用表示不超過的最大整數(shù),例如,,.若數(shù)列滿足,,求的值;

(3)設(shè)定義在正整數(shù)集上的函數(shù)滿足:當(dāng))時(shí),,問是否存在正整數(shù),使得?若存在,求出的值;若不存在,說明理由(已知).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上取一點(diǎn),過點(diǎn)軸的垂線段為垂足,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),設(shè)線段中點(diǎn)的軌跡為.

(1)求的方程;

(2)試問在上是否存在兩點(diǎn)關(guān)于直線對(duì)稱,且以為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)xa2-1=0,a∈R},若BA,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左頂點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),證明:到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動(dòng)中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)情況良好的某種消費(fèi)品專賣店以萬元的優(yōu)惠價(jià)轉(zhuǎn)讓給了尚有萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中有:①這種消費(fèi)品的進(jìn)價(jià)為每件元;②該店月銷量(百件)與銷售價(jià)格(元)的關(guān)系如圖所示;③每月需各種開支元.

1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;

2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲,乙兩地某月時(shí)的氣溫,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的中位數(shù)小于乙地該月時(shí)的氣溫的中位數(shù);④甲地該月時(shí)的氣溫的中位數(shù)大于乙地該月時(shí)的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=cosx+是奇函數(shù);

存在實(shí)數(shù),使得sin+cos2;

、是第一象限角且<,則tan<tan

x=是函數(shù)y=sin2x+的一條對(duì)稱軸方程;

函數(shù)y=tan2x+的圖象關(guān)于點(diǎn),0成中心對(duì)稱圖形.

其中正確命題的序號(hào)為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案