9.已知函數(shù)f(2x)的定義域為[$\frac{3}{2}$,3],則函數(shù)y=$\frac{f(x)}{\sqrt{5-x}}$的定義域為( 。
A.[$\frac{3}{2}$,5)B.[$\frac{3}{2}$,3]C.[3,5)D.[3,5]

分析 由函數(shù)f(2x)的定義域求得函數(shù)f(x)的定義域,再由分母中根式內(nèi)部的代數(shù)式大于0求得x的范圍,取交集得答案.

解答 解:∵f(2x)的定義域為[$\frac{3}{2}$,3],則x∈[$\frac{3}{2}$,3],
∴2x∈[3,6],即函數(shù)f(x)的定義域為[3,6],
又由5-x>0,得x<5.
∴函數(shù)y=$\frac{f(x)}{\sqrt{5-x}}$的定義域為[3,5).
故選:C.

點評 本題考查函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的解決方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C:y2=2px(p≠0)的焦點F在直線2x+y-2=0上.
(1)求拋物線C的方程;
(2)已知點P是拋物線C上異于坐標(biāo)原點O的任意一點,拋物線在點P處的切線分別與x軸、y軸交于點B,E,設(shè)$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求證:λ為定值;
(3)在(2)的條件下,直線PF與拋物線C交于另一點A,請問:△PAB的面積是否存在最小值?若存在,請求出最小值及此時點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=-x3+3x(x<0)的極值點為x0,則x0=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,若$\overrightarrow{a}$=$\overrightarrow{OD}$,$\overrightarrow$=$\overrightarrow{OE}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,點P是以點O為圓心的圓弧$\widehat{DE}$上一動點,設(shè)$\overrightarrow{OP}$=x$\overrightarrow{OD}$+y$\overrightarrow{OE}$(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=x3-4x2+4x的極小值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知如圖平行四邊形ABCD中,點E是CD的中點,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(寫出解題過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.動點P在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,Q點在圓C:x2+(y-5)2=1上移動,試求PQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)點P為圓C1:x2+y2=2上的動點,過點P作x軸的垂線,垂足為Q,點M滿足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求點M的軌跡C2的方程;
(2)過直線x=2上的點T作圓C1的兩條切線,設(shè)切點分別為A、B,若直線AB與(1)中的曲線C2交與C、D兩點,求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{3}$,以原點O為圓心,b為半徑的圓與直線x-y+2=0相切,A、B分別是橢圓的左、右頂點,P為橢圓C上的動點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P與A,B均不重合,直線PA,PB的斜率分別為k1,k2,求k1•k2的值;
(Ⅲ)設(shè)M為過P且垂直于x軸的直線上的點,若$\frac{|OP|}{|OM|}$=λ($\frac{\sqrt{3}}{3}$≤λ<1),求點M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案