【題目】新《水污染防治法》已由中華人民共和國第十二屆全國人民代表大會常務委員會第二十八次會議于2017627日通過,自201811日起施行.201831日,某縣某質(zhì)檢部門隨機抽取了縣域內(nèi)100眼水井,檢測其水質(zhì)總體指標.

羅斯水質(zhì)指數(shù)

02

24

46

68

810

水質(zhì)狀況

腐敗污水

嚴重污染

污染

輕度污染

純凈

1)求所抽取的100眼水井水質(zhì)總體指標值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

2)①由直方圖可以認為,100眼水井水質(zhì)總體指標值服從正態(tài)分布,利用該正態(tài)分布,求落在(5.21,5.99)內(nèi)的概率;

②將頻率視為概率,若某鄉(xiāng)鎮(zhèn)抽查5眼水井的水質(zhì),記這5眼水井水質(zhì)總體指標值位于(610)內(nèi)的井數(shù)為,求的分布列和數(shù)學期望.

附:①計算得所抽查的這100眼水井總體指標的標準差為

②若,則,

【答案】15.6;(2)①;②分布列見解析,

【解析】

1)根據(jù)頻率分布直方圖中平均數(shù)的求解方法,即可容易求得結果;

2)①根據(jù)題意,由正態(tài)分布的概率求解公式,即可求得結果;

②容易知服從二項分布,先求得的取值,求得對應取值的概率,獲得分布列,再求數(shù)學期望即可.

1)所抽取的100眼水井總體指標值的樣本平均數(shù)

2)①∵服從正態(tài)分布,且,,

落在內(nèi)的概率約是

②根據(jù)題意得,

;

;;

;

的分布列為

0

1

2

3

4

5

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角ABC中,a2,_______,求ABC的周長l的范圍.

在①(﹣cossin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

注:這三個條件中任選一個,補充在上面問題中并對其進行求解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若,且存在不相等的實數(shù),使得,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡忽如一夜春風來,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)

經(jīng)常使用信用卡

偶爾或不用信用卡

合計

40歲及以下

15

35

50

40歲以上

20

30

50

合計

35

65

100

1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?

2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按經(jīng)常使用偶爾或不用這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;

②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學期望和方差.

參考公式:,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蛋糕店計劃按天生產(chǎn)一種面包,每天生產(chǎn)量相同,生產(chǎn)成本每個6元,售價每個8元,未售出的面包降價處理,以每個5元的價格當天全部處理完.

1)若該蛋糕店一天生產(chǎn)30個這種面包,求當天的利潤y(單位:元)關于當天需求量n(單位:個,)的函數(shù)解析式;

2)蛋糕店記錄了30天這種面包的日需求量(單位:個),整理得表:

日需求量n

28

29

30

31

32

33

頻數(shù)

3

4

6

6

7

4

假設蛋糕店在這30天內(nèi)每天生產(chǎn)30個這種面包,求這30天的日利潤(單位:元)的平均數(shù)及方差;

3)蛋糕店規(guī)定:若連續(xù)10天的日需求量都不超過10個,則立即停止這種面包的生產(chǎn),現(xiàn)給出連續(xù)10天日需求量的統(tǒng)計數(shù)據(jù)為平均數(shù)為6,方差為2”,試根據(jù)該統(tǒng)計數(shù)據(jù)決策是否一定要停止這種面包的生產(chǎn)?并給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是兩個非零平面向量,則有

①若

②若,

③若,則存在實數(shù),使得

④若存在實數(shù)使得,四個命題中真命題的序號為 __________.(填寫所有真命題的序號)

【答案】①③④

【解析】逐一考查所給的結論:

①若,則,據(jù)此有:,說法①正確;

②若,,則,

,說法②錯誤;

③若,則,據(jù)此有:,

由平面向量數(shù)量積的定義有:,

則向量反向,故存在實數(shù),使得,說法③正確;

④若存在實數(shù),使得,則向量與向量共線,

此時,

若題中所給的命題正確,則,

該結論明顯成立.即說法④正確;

綜上可得:真命題的序號為①③④.

點睛:處理兩個向量的數(shù)量積有三種方法:利用定義;利用向量的坐標運算;利用數(shù)量積的幾何意義.具體應用時可根據(jù)已知條件的特征來選擇,同時要注意數(shù)量積運算律的應用.

型】填空
束】
17

【題目】已知在,.

(1)求角的大小;

(2)設數(shù)列滿足,項和為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當?shù)氐牡刭|(zhì)構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.

試估計該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災害的概率;

2)該河流域某企業(yè),在8月份,若沒受12級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.

現(xiàn)此企業(yè)有如下三種應對方案:

方案

防控等級

費用(單位:萬元)

方案一

無措施

0

方案二

防控1級災害

40

方案三

防控2級災害

100

試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長18.964km,共設13座車站.目前八通線執(zhí)行2014年12月28日制訂的計價標準,各站間計程票價(單位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

傳媒大學

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹

3

3

3

梨園

/p>

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學

雙橋

管莊

八里橋

通州北苑

果園

九棵樹

梨園

臨河里

土橋

(Ⅰ)在13座車站中任選兩個不同的車站,求兩站間票價不足5元的概率;

(Ⅱ)甲乙二人從四惠站上車乘坐八通線,各自任選另一站下車(二人可同站下車),記甲乙二人乘車購票花費之和為X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車,任選另一站下車,記票價為元;乙從土橋站上車,任選另一站下車,記票價為元.試比較的方差大小.(結論不需要證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、是空間兩條不同的直線,、是空間兩個不同的平面.給出下列四個命題:

①若,,則

②若,,則;

③若,,則;

④若,,,則

其中正確的是__________(填序號).

查看答案和解析>>

同步練習冊答案