19.下列說法中正確的有:①③④.(將你認為正確的命題序號全部填在橫線上)
①電影院調(diào)查觀眾的某一指標,通知“每排(每排人數(shù)相等)座位號為14的觀眾留下來座談”是系統(tǒng)抽樣;
②推理過程“因為指數(shù)函數(shù)y=ax是增函數(shù),而y=2x是指數(shù)函數(shù),所以y=2x是增函數(shù)”中,小前提是錯誤的;
③對命題“正三角形與其內(nèi)切圓切于三邊中點”可類比猜想:正四面體與其內(nèi)切球切于各面中心;
④在判斷兩個變量y與x是否相關(guān)時,選擇了3個不同的模型,它們的相關(guān)指數(shù)R2分別為:模型1為0.98,模型2為0.80,模型3為0.50.其中擬合效果最好的是模型1.

分析 ①根據(jù)抽樣的定義進行判斷,
②根據(jù)合情推理的定義進行判斷,
③根據(jù)類比推理的定義進行判斷,
④根據(jù)關(guān)指數(shù)的定義進行判斷.

解答 解:由題意可知,①是系統(tǒng)抽樣,正確;
②推理過程是大前提錯誤,而不是小前提,錯誤;
③滿足合情推理,因此③正確;
④根據(jù)相關(guān)指數(shù)的定義可知,相關(guān)指數(shù)越接近于1,模型的擬合效果越好,因此④正確.
故答案為:①③④.

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,但難度不大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.曲線f(x)=2x2-3x在點(1,f(1))處的切線方程為x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,若在雙曲線的右支上存在一點M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0(其中O為坐標原點),且|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,則雙曲線離心率為$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$(3an-1).數(shù)列{bn}為等差數(shù)列,b1=a1,b2=a3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足z=$\frac{5}{2-i}$,則|z|=( 。
A.2B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為M,第二象限的點P,Q在雙曲線的某條漸近線上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ為等邊三角形,則下列結(jié)論正確的有①②(寫出所有正確結(jié)論的序號)
①雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{2}$x;
②雙曲線的離心率為$\frac{\sqrt{7}}{2}$;
③雙曲線的頂點為(±2,0);
④雙曲線的焦點為(±3,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,圓錐形容器的高為h,圓錐內(nèi)水面的高為h1,且$\frac{h_1}{h}$=$\frac{1}{3}$,若將圓錐倒置,水面高為h2,則$\frac{h_2}{h}$等于$\frac{\root{3}{19}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}是等差數(shù)列,公差d>0,a1=2,其前n項為Sn(n∈N*).且a1,a4,S5+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項an及前n項和Sn;
(Ⅱ)若anbn=4,數(shù)列{bnbn+2}的前n項和為Tn,證明:對n∈N*,$\frac{4}{3}≤{T_n}$<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在平面直角坐標系xOy中,若雙曲線$\frac{{y}^{2}}{{m}^{2}+1}$-$\frac{{x}^{2}}{2m+6}$=1的離心率為$\sqrt{5}$,則實數(shù)m的值為1或-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案