分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)先求出A的坐標(biāo),代入直線方程可得m、n的關(guān)系,再利用1的代換結(jié)合均值不等式求解即可.
解答 解:∵x=-2時(shí),y=loga1-1=-1,
∴函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點(diǎn)(-2,-1)即A(-2,-1),
∵點(diǎn)A在直線mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0,$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(2m+n)=2+$\frac{n}{m}$+$\frac{4m}{n}$+2≥4+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=8,
當(dāng)且僅當(dāng)m=$\frac{1}{4}$,n=$\frac{1}{2}$時(shí)取等號(hào),即$\frac{1}{m}$+$\frac{2}{n}$的最小值為8.
點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì)和均值不等式等知識(shí)點(diǎn),運(yùn)用了整體代換思想,是高考考查的重點(diǎn)內(nèi)容.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤1} | B. | {x|-3≤x≤-1} | C. | {x|x<-3或x>-1} | D. | {x|x≤1或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一定為正 | B. | 一定為負(fù) | C. | 先為正后為負(fù) | D. | 先為負(fù)后為正 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com