【題目】某班級的全體學生平均分成個小組,且每個小組均有名男生和多名女生.現(xiàn)從各個小組中隨機抽取一名同學參加社區(qū)服務活動,若抽取的名學生中至少有一名男生的概率為,則(

A.該班級共有名學生

B.第一小組的男生甲被抽去參加社區(qū)服務的概率為

C.抽取的名學生中男女生數(shù)量相同的概率是

D.設抽取的名學生中女生數(shù)量為,則

【答案】ACD

【解析】

設該班級每個小組共有名女生,由題意得抽取的名學生中沒有男生(即6名學生全為女生)的概率為,解得,結(jié)合題設即可判斷A、B;再根據(jù)二項分布的概率公式及其方差公式即可判斷C、D

解:設該班級每個小組共有名女生,

∵抽取的名學生中至少有一名男生的概率為,

∴抽取的名學生中沒有男生(即6名學生全為女生)的概率為,

,解得

∴每個小組有4名男生、2名女生,共6名學生,

∴該班級共有36名學生,則A對;

∴第一小組的男生甲被抽去參加社區(qū)服務的概率為,則B錯;

抽取的名學生中男女生數(shù)量相同的概率是,則C對;

設抽取的名學生中女生數(shù)量為,則,則,則D對;

故選:ACD

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x,g(x)=2x+a,若x1[,1],x2[2,3],使得f(x1)g(x2),則實數(shù)a的取值范圍是(  )

A.a≤1B.a≥1C.a≤2D.a≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值點;

(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是一個各位數(shù)字都不是0且沒有重復數(shù)字的三位數(shù),將組成的3個數(shù)字按從小到大排成的三位數(shù)記為,按從大到小排成的三位數(shù)記為,(例如,則,)閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個,輸出的結(jié)果=( )

A. 693 B. 594 C. 495 D. 792

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點為曲線上的動點,過軸的垂線,垂足為,滿足。

(1)求曲線的方程;

(2)直線與曲線交于兩不同點,( 非原點),過,兩點分別作曲線的切線,兩切線的交點為。設線段的中點為,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是以直徑的圓上的動點,已知,則的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型電器企業(yè),為了解組裝車間職工的生活情況,從中隨機抽取了名職工進行測試,得到頻數(shù)分布表如下:

日組裝個數(shù)

人數(shù)

6

12

34

30

10

8

1)現(xiàn)從參與測試的日組裝個數(shù)少于的職工中任意選取人,求至少有人日組裝個數(shù)少于的概率;

2)由頻數(shù)分布表可以認為,此次測試得到的日組裝個數(shù)服從正態(tài)分布,近似為這人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).

i)若組裝車間有名職工,求日組裝個數(shù)超過的職工人數(shù);

ii)為鼓勵職工提高技能,企業(yè)決定對日組裝個數(shù)超過的職工日工資增加元,若在組裝車間所有職工中任意選取人,求這三人增加的日工資總額的期望.

附:若隨機變量服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)若正整數(shù)n可以表示成)的形式,則稱n為“好數(shù)”.試求與2的正整數(shù)次冪相鄰的所有好數(shù).(2) 試求不定方程的所有非負整數(shù)解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線C1yx2(p>0)的焦點與雙曲線C2y21的右焦點的連線交C1于第一象限的點M.C1在點M處的切線平行于C2的一條漸近線,則p( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案