【題目】已知橢圓的左、右焦點分別為、,橢圓的離心率為,過橢圓的左焦點,且斜率為的直線,與以右焦點為圓心,半徑為的圓相切.

1)求橢圓的標準方程;

2)線段是橢圓過右焦點的弦,且,求的面積的最大值以及取最大值時實數(shù)的值.

【答案】12)最大值,.

【解析】

(1)設(shè),,可得:直線的方程為:,即,直線與圓相切,圓心到直線的距離為,解得,結(jié)合已知,即可求得答案.

2)將直線的方程與橢圓方程聯(lián)立,求得,結(jié)合導數(shù)知識,即可求得答案.

1)設(shè),,

直線斜率為,且過橢圓的左焦點.

直線的方程為:,即.

直線與圓相切,

圓心到直線的距離為,

解得.

橢圓的離心率為,即,

解得:,

根據(jù):

橢圓的方程為.

2)由(1)得,,

直線的斜率不為,

設(shè)直線的方程為:,

將直線的方程與橢圓方程聯(lián)立可得:消掉

可得:,

恒成立,

設(shè),,

,是上述方程的兩個不等根,

根據(jù)韋達定理可得:

,.

的面積:

設(shè),則,,

可得:.

恒成立,

函數(shù)上為減函數(shù),故的最大值為:,

的面積的最大值為,

當且僅當,即時取最大值,

此時直線的方程為,即直線垂直于軸,

此時,即.

綜上所述,的面積的最大值,的面積的最大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】圖一是美麗的勾股樹,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹,重復圖二的作法,得到圖三為第2勾股樹,以此類推,已知最大的正方形面積為1,則第勾股樹所有正方形的個數(shù)與面積的和分別為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家學生體質(zhì)健康測試專家組到某學校進行測試抽查,在高三年級隨機抽取100名男生參加實心球投擲測試,測得實心球投擲距離(均在5至15米之內(nèi))的頻數(shù)分布表如下(單位:米):

分組

頻數(shù)

9

23

40

22

6

規(guī)定:實心球投擲距離在之內(nèi)時,測試成績?yōu)椤傲己谩,以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.

(1)求,并估算該校高三年級男生實心球投擲測試成績?yōu)椤傲己谩钡陌俜直?

(2)現(xiàn)在從實心球投擲距離在之內(nèi)的男生中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人參加提高體能的訓練,求:在被抽取的3人中恰有兩人的實心球投擲距離在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數(shù)據(jù)的散點圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】位同學分成組,參加個不同的志愿者活動,每組至少人,其中甲乙人不能分在同一組,則不同的分配方案有_____種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌電腦體驗店預計全年購入臺電腦,已知該品牌電腦的進價為/臺,為節(jié)約資金決定分批購入,若每批都購入為正整數(shù))臺,且每批需付運費元,儲存購入的電腦全年所付保管費與每批購入電腦的總價值(不含運費)成正比(比例系數(shù)為),若每批購入臺,則全年需付運費和保管費.

1)記全年所付運費和保管費之和為元,求關(guān)于的函數(shù).

2)若要使全年用于支付運費和保管費的資金最少,則每批應購入電腦多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于兩點.

(1)求拋物線的方程及點的坐標;

(2)的最大值

查看答案和解析>>

同步練習冊答案