13.下列正確的是( 。
A.若a,b∈R,則$\frac{a}+\frac{a}≥2$B.若x<0,則x+$\frac{4}{x}$≥-2$\sqrt{x•\frac{4}{x}}$=-4
C.若ab≠0,則$\frac{b^2}{a}+\frac{a^2}≥a+b$D.若x<0,則2x+2-x>2

分析 利用基本不等式的使用法則“一正二定三相等”即可判斷出正誤.

解答 解:A.a(chǎn)b<0時不成立.
B.x<0,則x+$\frac{4}{x}$=-$(-x+\frac{4}{-x})$≤-2$\sqrt{x•\frac{4}{x}}$=-4,因此不成立.
C.取a=-1,b=-2時,不成立.
D.x<0,則2x+2-x>2,成立.
故選:D.

點評 本題考查了基本不等式的使用法則“一正二定三相等”,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.直線x-2y+2m=0與坐標軸圍成的三角形的面積不小于1,則實數(shù)m的取值范圍為(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}是公差不為0的等差數(shù)列,Sn為數(shù)列{an}的前n項和,S5=20,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn+1=bn+an,且b1=1,求數(shù)列{$\frac{1}{_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設不等式-2<|x-1|-|x+2|<0的解集為M,a,b∈M.
(Ⅰ)證明:|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$;
(Ⅱ)比較|1-4ab|與2|a-b|的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.實數(shù)x,y滿足$2{cos^2}(x+y-1)=\frac{{{{(x+1)}^2}+{{(y-1)}^2}-2xy}}{x-y+1}$,則xy的最小值為( 。
A.2B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=|sinx|•cosx,則下列說法正確的是(  )
A.f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對稱B.f(x)的周期為π
C.若|f(x1)|=|f(x2)|,則x1=x2+2kπ(k∈Z)D.f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求與圓(x-2)2+y2=2相切且在x軸,y軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若α∈($\frac{3π}{2}$,2π),化簡$\sqrt{1-sinα}$+$\sqrt{1+sinα}$=$-2cos\frac{α}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知命題p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦點在y軸上的橢圓;命題q:?x∈R,4x2-4mx+4m-3≥0.若(¬p)∧q為真,求m的取值范圍.

查看答案和解析>>

同步練習冊答案