精英家教網 > 高中數學 > 題目詳情

【題目】如圖,一個水輪的半徑為,水輪軸心距離水面的高度為,已知水輪按逆時針勻速轉動,每分鐘轉動圈,當水輪上點從水中浮現時的起始(圖中點)開始計時,記為點距離水面的高度關于時間的函數,則下列結論正確的是( )

A.

B.

C.,則

D.不論為何值,是定值

【答案】BD

【解析】

以水輪所在面為坐標平面,以水輪的軸心為坐標原點,軸和軸分別平行和垂直于水面建立平面直角坐標系,從而點的縱坐標為,逐一判斷選項即可求解.

如圖,以水輪所在面為坐標平面,以水輪的軸心為坐標原點,

軸和軸分別平行和垂直于水面建立平面直角坐標系,

依題意得內所轉過的角度為,則.

則點的縱坐標為

距離水面的高度關于時間的函數;

,選項A錯誤;

,

,選項B正確;

得,解得,選項C錯誤;

展開整理得為定值,選項D正確;

故答案為:BD.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓離心率為,四個頂點構成的四邊形的面積是4.

(1)求橢圓C的標準方程;

(2)若直線與橢圓C交于P,Q均在第一象限,直線OP,OQ的斜率分別為,且(其中O為坐標原點).證明:直線l的斜率k為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,已知橢圓上存在點,使,且這樣的點有且只有兩個.

1)求橢圓的離心率;

2)過點的直線與橢圓相交于兩點,且是坐標原點,求的面積取得最大值時的橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點F是拋物線Cy22pxp0)的焦點,若點Px0,4)在拋物線C上,且.

1)求拋物線C的方程;

2)動直線lxmy+1mR)與拋物線C相交于A,B兩點,問:在x軸上是否存在定點Dt,0)(其中t≠0),使得kAD+kBD0,(kADkBD分別為直線AD,BD的斜率)若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fxx+alnx

1)求fx)在(1,f1))處的切線方程(用含a的式子表示)

2)討論fx)的單調性;

3)若fx)存在兩個極值點x1,x2,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為4.

(1)求橢圓的方程;

(2)過點作兩條直線,分別交橢圓兩點(異于),當直線,的斜率之和為4時,直線恒過定點,求出定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數).以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

1)分別寫出曲線和曲線的極坐標方程;

2P為曲線上的任意一點,過P向曲線引兩條切線PA、PB,當最大時,求P點的極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解學生對消防安全知識的掌握情況,開展了網上消防安全知識有獎競賽活動,并對參加活動的男生、女生各隨機抽取20人,統(tǒng)計答題成績,分別制成如下頻率分布直方圖和莖葉圖:

1)把成績在80分以上(含80分)的同學稱為“安全通”.根據以上數據,完成以下列聯表,并判斷是否有95%的把握認為是否是“安全通”與性別有關

男生

女生

合計

安全通

非安全通

合計

2)以樣本的頻率估計總體的概率,現從該校隨機抽取22女,設其中“安全通”的人數為,求的分布列與數學期望.

附:參考公式,其中.

參考數據:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案