【題目】某工廠生產(chǎn)產(chǎn)品件的總成本(萬元).已知產(chǎn)品單價(萬元)與產(chǎn)品件數(shù)滿足,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元.
(1)設(shè)產(chǎn)量為件時,總利潤為(萬元),求的解析式;
(2)產(chǎn)量定為多少時總利潤(萬元)最大?并求最大值.
【答案】(1)(且)(2)產(chǎn)量定為25件時,總利潤(萬元)最大,最大值為875萬元.
【解析】分析:(1)根據(jù)題意可求出,進而得出總利潤為為總賣價減去總成本;
(2)根據(jù)利潤表達式,求出導(dǎo)函數(shù),利用導(dǎo)函數(shù)得出函數(shù)的極值,進而求出函數(shù)的最大值.
詳解:
(1)由產(chǎn)品單價(萬元)與產(chǎn)品件數(shù)滿足:,
生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,得
,即,
(且)
(2)由得
令即
當時,,單調(diào)遞增;
當時,,單調(diào)遞減;
因此當時,取得最大值,且最大值為(萬元)
故產(chǎn)量定為25件時,總利潤(萬元)最大,最大值為875萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其圖像的一個對稱中心是將的圖像向左平移個單位長度后得到函數(shù)的圖像。
(1)求函數(shù)的解析式;
(2)若對任意當時,都有求實數(shù)的最大值;
(3)若對任意實數(shù)在上與直線的交點個數(shù)不少于6個且不多于10個,求正實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點.
(I)求證:PB∥平面FAC;
(II)求三棱錐P-EAD的體積;
(III)求證:平面EAD⊥平面FAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)的判斷正確的是( 。
①的解集是;
②極小值,是極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬在一個U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l.
(1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達式,并寫出定義域;
(2)求l的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若直線過點,求直線的極坐標方程;
(2)若直線與曲線交于兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( )
A.f(x)=
B.f(x)=x3
C.f(x)=( )x
D.f(x)=3x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過棱AB的中點E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點F,G,H.
(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,, 平面,Q是AD的中點,M是棱PC上的點,,,.
(1)求證:平面;
(2)若平面QMB與平面PDC所成的銳二面角的大小為,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com