在半徑為2的圓內(nèi)有一個邊長為1的正方形,若向圓內(nèi)隨機投一點,則該點落在正方形內(nèi)的概率為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:由于圓的半徑是2,正方形的邊長為1,分別求其面積.然后代入幾何概型公式,即可得到答案.
解答: 解:∵圓的半徑為2,
∴圓的面積是π22=4π,
∵正方形的邊長為1,
∵正方形的面積S正方形=12=1,
向圓內(nèi)隨機投一點,則該點落在正方形內(nèi)的概率P=
1

故答案為:
1
點評:本題主要考查了幾何概型,以及圓與正方形的面積的計算,解題的關(guān)鍵是弄清幾何測度,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-8≤α≤0},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{x,xy,lg(xy)}={0,|x|,y},求x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
=(
3
,1),
b
=(-2
3
,2)
,則
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點M,N在棱CC1,BB1上,且CM=B1N,則四棱錐A-BCMN的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),數(shù)列{bn},{cn}滿足bn=
an+2
an
,cn=anan+12
(1)若數(shù)列{an}為等比數(shù)列,求證:數(shù)列{cn}為等比數(shù)列;
(2)若數(shù)列{cn}為等比數(shù)列,且bn+1≥bn,求證:數(shù)列{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點A、B的極坐標分別為(1 , 
π
3
)
、(3 , 
3
)
,曲線C的參數(shù)方程為
x=rcosα
y=rsinα
為參數(shù)).
(Ⅰ)求直線AB的直角坐標方程;
(Ⅱ)若直線AB和曲線C只有一個交點,求r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣M=
10
11
,則矩陣M的逆矩陣M-1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個算法的流程圖,若輸出的結(jié)果是1023,則判斷框中的整數(shù)M的值是
 

查看答案和解析>>

同步練習冊答案