圓C:ρ=2sinθ的圓心到直線l:ρsinθ=-2的距離為
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:把圓的極坐標方程、直線的極坐標方程化為直角坐標方程,求出圓心,可得圓心到直線l的距離.
解答: 解:圓C:ρ=2sinθ 即 ρ2=2ρsinθ,化為直角坐標方程為 x2+(y-1)2=1,
故它的圓心為(0,1).
直線l:ρsinθ=-2 即y=-2,顯然圓心到直線l的距離為3,
故答案為:3.
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1是直棱柱,AB⊥AC,AB=AC=AA1=2,點MN分別為A1B和B1C1的中點.
(Ⅰ)求證:MN∥平面A1ACC1
(Ⅱ)求點B到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={(x,y)|0≤x≤1,y=0},B={(x,y)|y=ax+b},討論是否存在實數(shù)a、b,使A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PB⊥平面ABCD.
(l)若AC=6,BD=8,PB=3,求三棱錐A一PBC的體積;
(2)若點E是DP的中點,證明:BD⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,AC與BD交于O點,E為PC的中點,AD=CD=1,PD=2,DB=2
2

(Ⅰ)證明PA∥平面BDE;
(Ⅱ)證明AC⊥平面PBD;
(Ⅲ)求三棱錐B-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A是圓ρ=2cosθ的圓心,則點A到直線ρcosθ+
3
ρsinθ=7的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(x)•f(x+2)=2014,若f(0)=1,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
2x+1
x+1
≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)的值域是[
1
2
,3],則函數(shù)g(x)=f(x)+
2
f(x)
的值域是
 

查看答案和解析>>

同步練習冊答案