已知拋物線C的頂點在原點,焦點為F(0,1),準線與y軸的交點為E.
(Ⅰ)求拋物線C的方程;
(Ⅱ)點P是拋物線C上的一個動點,拋物線在點P處的切線為l,過點P與l垂直的直線交拋物線C于另一點Q,設PE,QE的斜率分別為k1,k2,是否存在點P使得3k1+2k2=0?若存在,求出點P的坐標;若不存在,請說明理由.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)由已知可得p=2,即可得出拋物線C的方程.
(II)假設存在點P使得3k1+2k2=0.設P(x1,y1),Q(x2,y2),由y=
1
4
x 2
可得y=
1
2
x
,直線l的斜率
1
2
x1
,由l⊥PQ,直線PQ的斜率-
2
x1
,可得直線PQ方程y=-
2
x1
(x-x1)+
1
4
x12
,與拋物線方程聯(lián)立可得x2+
8
x1
x-x12-8=0
,可得根與系數(shù)的關系,再利用斜率計算公式解出即可.
解答: 解:(Ⅰ)由已知可得拋物線C的方程為:x2=4y.
(Ⅱ)假設存在點P使得3k1+2k2=0.
設P(x1,y1),Q(x2,y2),
y=
1
4
x 2
可得y=
1
2
x
,
∴直線l的斜率
1
2
x1
,
∴x1≠0.
由l⊥PQ,直線PQ的斜率-
2
x1
,
∴直線PQ方程y=-
2
x1
(x-x1)+
1
4
x12
,
聯(lián)立方程
y=-
2
x1
(x-x1)+
1
4
x12
x2=4y
,
代入消元并整理得得x2+
8
x1
x-x12-8=0

x1+x2=-
8
x1
,x1x2=-
x
2
1
-8
,
k1=
y1+1
x1
,k2=
y2+1
x2
,
3k1+2k2=0,
3
y1+1
x1
+2
y2+1
x2
=0
,
∴3y1x2+2y2x1+3x2+2x1=0,
1
4
x1x2(3x1+2x2)+(3x2+2x1)=0

x1+x2=-
8
x1
,x2=-
8
x1
-x1
x1x2=-
x
2
1
-8
,代入消去x2并整理得
x
4
1
-4
x
2
1
-32=0
,(
x
2
1
+4)(
x
2
1
-8)=0
,
x12=8
∴存在P(±2
2
,2)
點評:本題考查了拋物線的標準方程及其性質、直線與拋物線相切問題轉化為方程聯(lián)立可得根與系數(shù)的關系、直線相互垂直與斜率的關系、導數(shù)的幾何意義,考查了推理能力與計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cosαcosβ-sinαsinβ=0,那么sinαcosβ+cosαsinβ的值為(
A、-1B、0C、1D、±1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面區(qū)域Ω={(x,y)|(x-1)2+(y-1)2≤1},平面區(qū)域M={(x,y)
1≤x+y≤3
-1≤x-y≤1
},若向區(qū)域Ω內(nèi)隨機拋擲一點P,則點P落在區(qū)域M內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:ax-y+2a=0,l2:(2a-3)x+ay+a=0互相平行,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,動點P在邊長為1的正方形ABCD上運動,點M為CD的中點,當點P沿A→B→C→M運動時,點P經(jīng)過的路程設為x,△APM的面積為f(x),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若6x3-3x2-x-1=a(2x-3)3+b(2x-3)2+c(2x-3)+d,求a-b+c-d=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(-1,0),則函數(shù)f(x-1)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,O,E分別為B1D,AB的中點.
(1)求證:OE∥平面BCC1B1;
(2)求證:平面B1DC⊥平面B1DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點”.已知函數(shù)f(x)=2x+1,x∈N的“生成點”坐標滿足二次函數(shù)g(x)=ax2+bx+c,則使函數(shù)y=g(x)與x軸無交點的a的取值范圍是( 。
A、0<α<
2+
3
16
B、
2-
3
16
<α<
2+
3
16
C、α<
2+
3
8
D、0<α<
2-
3
16
或α>
2+
3
16

查看答案和解析>>

同步練習冊答案