【題目】設(shè)[x]表示不超過(guò)x的最大整數(shù),如:[π]=3,[﹣4.3]=﹣5.給出下列命題: ①對(duì)任意實(shí)數(shù)x,都有[x]﹣x≤0;
②若x1≤x2 , 則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)= ﹣ ,則y=[f(x)]+[f(﹣x)]的值域?yàn)閧﹣1,0}.
其中所有真命題的序號(hào)是 .
【答案】①②④
【解析】解:對(duì)于①,對(duì)任意實(shí)數(shù)x,都有[x]﹣x≤0,滿足新定義∴①正確.
對(duì)于②,x1≤x2,則[x1]≤[x2],∴②正確.
對(duì)于③,[lg1]+[lg2]+[lg3]+[lg4]+…+[lg100]
=0+1×90+2=92,∴③不正確.
對(duì)于④,函數(shù)f(x)= ﹣ = ,
同理可得,f(﹣x)∈(﹣ , ),
當(dāng)f(x)∈ 時(shí),f(﹣x)∈(0, ),∴[f(x)]=﹣1,[f(﹣x)]=0,
∴[f(x)]+[f(﹣x)]=﹣1,
同理當(dāng)f(﹣x)∈ 時(shí),f(x)∈(0, ),∴[f(x)]=0,[f(﹣x)]=﹣1,
∴[f(x)]+[f(﹣x)]=﹣1,
當(dāng)f(x)=0時(shí),f(﹣x)=0,∴[f(x)]=0,[f(﹣x)]=0,
∴[f(x)]+[f(﹣x)]=0,
綜上,y=[f(x)]+[f(﹣x)]={﹣1,0}
∴④正確.
所以答案是:①②④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體 中, 的中點(diǎn)為 , 的中點(diǎn)為 ,則異面直線 與 所成的角是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長(zhǎng)是 .
(1)用寬 (單位 )表示所建造的每間熊貓居室的面積 (單位 );
(2)怎么設(shè)計(jì)才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】比較下列各組數(shù)中兩個(gè)數(shù)的大。
(1) 與;
(2)3與3.1;
(3) 與;
(4)0.20.6與0.30.4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了適應(yīng)市場(chǎng)需要,某地準(zhǔn)備建一個(gè)圓形生豬儲(chǔ)備基地(如右圖),它的附近有一條公路,從基地中心O處向東走1 km是儲(chǔ)備基地的邊界上的點(diǎn)A,接著向東再走7 km到達(dá)公路上的點(diǎn)B;從基地中心O向正北走8 km到達(dá)公路的另一點(diǎn)C.現(xiàn)準(zhǔn)備在儲(chǔ)備基地的邊界上選一點(diǎn)D,修建一條由D通往公路BC的專用線DE,求DE的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛汽車,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表: A型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種車型中購(gòu)買一輛,請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買哪一種車型,并說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,A(2,-1),B(4,3),C(3,-2).
(1)求BC邊上的高所在直線的一般式方程;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn).
(1)求圓A的方程;
(2)當(dāng)|MN|=2時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com