【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛汽車,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表: A型車

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

5

10

30

35

15

3

2

B型車

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

14

20

20

16

15

10

5

( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛,請你根據(jù)所學的統(tǒng)計知識,給出建議應(yīng)該購買哪一種車型,并說明你的理由.

【答案】解:( I)∵出租天數(shù)為3天的汽車A型車有30輛,B型車20輛.從中隨機抽取一輛,這輛汽車是A型車的概率約為 =0.6.

( II)設(shè)“事件Ai表示一輛A型車在一周內(nèi)出租天數(shù)恰好為i天”,

“事件Bj表示一輛B型車在一周內(nèi)出租天數(shù)恰好為j天”,其中i,j=1,2,…,7.

則該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率為

P(A1B3+A2B2+A3B1)=P(A1B3)+P(A2B2)+P(A3B1

=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1

=

=

該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率為

(Ⅲ)設(shè)X為A型車出租的天數(shù),則X的分布列為

X

1

2

3

4

5

6

7

P

0.05

0.10

0.30

0.35

0.15

0.03

0.02

設(shè)Y為B型車出租的天數(shù),則Y的分布列為

Y

1

2

3

4

5

6

7

P

0.14

0.20

0.20

0.16

0.15

0.10

0.05

E(X)=1×0.05+2×0.10+3×0.30+4×0.35+5×0.15+6×0.03+7×0.02=3.62.

E(Y)=1×0.14+2×0.20+3×0.20+4×0.16+5×0.15+6×0.10+7×0.05=3.48.

一輛A類型的出租車一個星期出租天數(shù)的平均值為3.62天,B類車型一個星期出租天數(shù)的平均值為3.48天.

從出租天數(shù)的數(shù)據(jù)來看,A型車出租天數(shù)的方差大于B型車出租天數(shù)的方差,綜合分析,選擇A類型的出租車更加合理


【解析】(Ⅰ)利用古典概型的概率計算公式即可得出;(Ⅱ)該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天分為以下三種情況:A型車1天B型車3天;A型車B型車都2天;A型車3天B型車1天,利用互斥事件和獨立事件的概率計算公式即可得出;(Ⅱ)從數(shù)學期望和方差分析即可得出結(jié)論.
【考點精析】利用離散型隨機變量及其分布列對題目進行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,當x∈(0,+∞)時,f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫棱長為2 cm的正方體的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知一艘海監(jiān)船O上配有雷達,其監(jiān)測范圍是半徑為25 km的圓形區(qū)域一艘外籍輪船從位于海監(jiān)船正東40 kmA處出發(fā),徑直駛向位于海監(jiān)船正北30 kmB處島嶼,速度為28 km/h.

這艘外籍輪船能否被海監(jiān)船監(jiān)測到?若能持續(xù)時間多長?(要求用坐標法)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)[x]表示不超過x的最大整數(shù),如:[π]=3,[﹣4.3]=﹣5.給出下列命題: ①對任意實數(shù)x,都有[x]﹣x≤0;
②若x1≤x2 , 則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)= ,則y=[f(x)]+[f(﹣x)]的值域為{﹣1,0}.
其中所有真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1mx8yn0l22xmy10互相平行,l1,l2之間的距離為 求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當a=1時,求集合A;
(2)若(﹣1,1)A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣2x+ex ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , , .

(I)求異面直線所成角的余弦值;

(II)求證: 平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案