10.函數(shù)f(x)=ln(x2-2x-3)的單調(diào)遞增區(qū)間是(3,+∞).

分析 令t=x2-2x-3>0 求得函數(shù)的定義域,結(jié)合f(x)=g(t)=lnt,本題即求二次函數(shù)t在定義域內(nèi)的增區(qū)間,再利用二次函數(shù)的性質(zhì)可得得出結(jié)論.

解答 解:令t=x2-2x-3>0,求得x<-1,或 x>3,故函數(shù)的定義域?yàn)閧x|x<-1,或 x>3 }.
根據(jù)f(x)=g(t)=lnt,本題即求二次函數(shù)t在定義域內(nèi)的增區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的增區(qū)間為(3,+∞),
故答案為:(3,+∞).

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知角α是第四象限角,角α的終邊經(jīng)過點(diǎn)P(4,y),且sinα=$\frac{y}{5}$,則tanα的值是( 。
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線C:y2=12x,過點(diǎn)P(2,0)且斜率為1的直線l與拋物線C相交于A、B兩點(diǎn),則線段AB的中點(diǎn)到拋物線C的準(zhǔn)線的距離為(  )
A.22B.14C.11D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A,B∈{-3,-1,1,2}且A≠B,則直線Ax+By+1=0的斜率小于0的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA垂直底面ABCD,PA=AB=2,E是棱PB的中點(diǎn).
(1)若AD=2,求B到平面CDE的距離;
(2)若平面ACE與平面CED夾角的余弦值為$\frac{3\sqrt{17}}{17}$,求此時(shí)AD的長(zhǎng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.甲、乙、丙、丁四個(gè)小朋友正在教室里玩耍,忽聽“砰”的一聲,講臺(tái)上的花盆被打破了,甲說:“是乙不小心闖的禍”乙說:“是丙闖的禍”,丙說:“乙說的不是實(shí)話.”丁說:“反正不是我闖的禍.”如果剛才四個(gè)小朋友中只有一個(gè)人說了實(shí)話,那么這個(gè)小朋友是丙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若不等式x2-ax+4>0對(duì)?x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xoy中,已知直線l:ax+y+2=0和點(diǎn)A(-3,0),若直線l上存在點(diǎn)M滿足MA=2MO,則實(shí)數(shù)a的取值范圍為a≤0,或a≥$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1>0}\\{x<2}\\{x+y-1>0}\end{array}\right.$,若z=2x-2y-1,則z的取值范圍為( 。
A.(-$\frac{5}{3}$,5)B.(-$\frac{5}{3}$,0)C.[0,5]D.[-$\frac{5}{3}$,5]

查看答案和解析>>

同步練習(xí)冊(cè)答案