【題目】在數(shù)列中,,且.

1的通項(xiàng)公式為__________;

2)在、、、項(xiàng)中,被除余的項(xiàng)數(shù)為__________

【答案】

【解析】

1)根據(jù)題意得知數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,可求出數(shù)列的通項(xiàng)公式,即可求出

2)設(shè),可得出,由為奇數(shù),可得出的倍數(shù)或的奇數(shù)倍且為偶數(shù),求出兩種情況下值的個(gè)數(shù),相加即可得出答案.

1

所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,

;

2)被整除且余數(shù)為的整數(shù)可表示為,

,可得,

<>,且,則為奇數(shù),

的倍數(shù),或者的奇數(shù)倍且為偶數(shù).

當(dāng)的倍數(shù)時(shí),的取值有:、、,共個(gè);

當(dāng)的奇數(shù)倍且為偶數(shù)時(shí),的取值有:、、、,共個(gè).

綜上所述,在、、、項(xiàng)中,被除余的項(xiàng)數(shù)為.

故答案為:;.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).

1)證明:點(diǎn)軸的右側(cè);

2)設(shè)線段的垂直平分線與軸、軸分別相交于點(diǎn).的面積相等,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過站的地鐵票價(jià)如下表:

乘坐站數(shù)

票價(jià)(元)

現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為 .

(1)求甲、乙兩人付費(fèi)相同的概率;

(2)設(shè)甲、乙兩人所付費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,滿足

1)將表示為的函數(shù),并求的最小正周期;

2)已知、、分別為銳角的三個(gè)內(nèi)角、、對(duì)應(yīng)的邊長(zhǎng),的最大值是,且,求周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的離心率為是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn). 設(shè)過點(diǎn)的動(dòng)直線相交于兩點(diǎn).

1)求的方程;

2)是否存在這樣的直線,使得的面積為,若存在,求出的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第28屆金雞百花電影節(jié)將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會(huì)》《春江水暖》《第一次的離別》《春潮》《抵達(dá)之謎》五部?jī)?yōu)秀作品將在電影節(jié)進(jìn)行展映.若從這五部作品中隨機(jī)選擇兩部放在展映的前兩位,則《春潮》與《抵達(dá)之謎》至少有一部被選中的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 C 經(jīng)過點(diǎn) (2,3),它的漸近線方程為 y = ±.橢圓 C1與雙曲線 C有相同的焦點(diǎn),橢圓 C1的短軸長(zhǎng)與雙曲線 C 的實(shí)軸長(zhǎng)相等.

1)求雙曲線 C 和橢圓 C1 的方程;

2)經(jīng)過橢圓 C1 左焦點(diǎn) F 的直線 l 與橢圓 C1 交于 AB 兩點(diǎn),是否存在定點(diǎn) D ,使得無論 AB 怎樣運(yùn)動(dòng),都有∠ADF = BDF ?若存在,求出 D 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點(diǎn)分別是,且橢圓上一動(dòng)點(diǎn)的最遠(yuǎn)距離為,過的直線與橢圓交于,兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為直角時(shí),求直線的方程;

3)直線的斜率存在且不為0時(shí),試問軸上是否存在一點(diǎn)使得,若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解居民的家庭收入情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機(jī)抽取了戶家庭進(jìn)行問卷調(diào)查,經(jīng)調(diào)查發(fā)現(xiàn),這些家庭的月收人在元到元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)作出:

1)經(jīng)統(tǒng)計(jì)發(fā)現(xiàn),該社區(qū)居民的家庭月收人(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù).落在區(qū)間的左側(cè),則可認(rèn)為該家庭屬收入較低家庭" ,社區(qū)將聯(lián)系該家庭,咨詢收入過低的原因,并采取相應(yīng)措施為該家庭提供創(chuàng)收途徑.若該社區(qū)家庭月收入為元,試判斷家庭是否屬于收人較低家庭”,并說明原因;

2)將樣本的頻率視為總體的概率

①從該社區(qū)所有家庭中隨機(jī)抽取戶家庭,若這戶家庭月收人均低于元的概率不小于,的最大值;

②在①的條件下,某生活超市贊助了該社區(qū)的這次調(diào)查活動(dòng),并為這次參與調(diào)在的家庭制定了贈(zèng)送購物卡的活動(dòng),贈(zèng)送方式為:家庭月收入低于的獲贈(zèng)兩次隨機(jī)購物卡,家庭月收入不低于的獲贈(zèng)一次隨機(jī)購物卡;每次贈(zèng)送的購物卡金額及對(duì)應(yīng)的概率分別為:

贈(zèng)送購物卡金額(單位:)

概率

家庭預(yù)期獲得的購物卡金額為多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案