【題目】數(shù)列,滿足下列條件:①;②當時,滿足:時,,時,,.

1)若,,求的值,并猜想數(shù)列可能的通項公式(不需證明);

2)若,是滿足的最大整數(shù),求的值.

【答案】1)見解析;(211.

【解析】

1)利用題中的條件,分別令,求出的值,并計算,,,根據(jù)這四項,猜想數(shù)列可能的通項公式;

2)用反證法說明時,,由此推出,從而得到通項公式,寫出通項公式,再由是滿足的最大整數(shù),得到,解之可得整數(shù).

1,,故,

,,

,,

,,

,,,

,,

猜想:.

2,,

,

時,假設存在使得

則有,與“是滿足的最大整數(shù)”矛盾,

假設不成立,

時,恒有,,

,

是以為首項,為公比的等比數(shù)列,

,

,

時,,

,,

時,

時,是單調遞減數(shù)列,

是滿足的最大整數(shù),

時,恒成立;時,,,

,

,

解得

為正整數(shù),,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人2013-2017這五年的年度體檢的血壓值的折線圖如圖所示.

(1)根據(jù)散點圖,直接判斷甲、乙這五年年度體檢的血壓值誰的波動更大,并求波動更大者的方差;

(2)根據(jù)乙這五年年度體檢血壓值的數(shù)據(jù),求年度體檢血壓值關于年份的線性回歸方程,并據(jù)此估計乙在2018年年度體檢的血壓值.

(附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某鎮(zhèn)有一塊空地,其中,,.當?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個旅游景點,擬在中間挖一個人工湖,其中,都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設兒童游樂場.為安全起見,需在的周圍安裝防護網(wǎng).

(1)當時,求防護網(wǎng)的總長度;

(2)為節(jié)省投入資金,人工湖的面積要盡可能小,問如何設計施工方案,可使的面積最小?最小面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,若存在,使得成立,則的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),等腰梯形,,,分別是的兩個三等分點.若把等腰梯形沿虛線、折起,使得點和點重合,記為點,如圖(2).

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種候鳥每年都按一定的路線遷陟,飛往繁殖地產卵科學家經過測量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),表示測量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,,

1,候鳥每分鐘的耗氧量為個單位時,它的飛行速度是多少

2,候鳥停下休息時,它每分鐘的耗氧量為多少個單位?

3若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗氧量的多少倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,點在橢圓上,且滿足

(1)求橢圓的方程;

(2)設傾斜角為的直線交于,兩點,記的面積為,求取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)

1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

2)是否存在常數(shù),當時,的值域為區(qū)間,且區(qū)間的長度為(視區(qū)間的長度為),如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,記.

1)求曲線處的切線方程;

2)求函數(shù)的單調區(qū)間;

3)當時,若函數(shù)沒有零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案