【題目】有一種候鳥每年都按一定的路線遷陟,飛往繁殖地產(chǎn)卵.科學(xué)家經(jīng)過測(cè)量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),表示測(cè)量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,,)
(1)若,候鳥每分鐘的耗氧量為個(gè)單位時(shí),它的飛行速度是多少?
(2)若,候鳥停下休息時(shí),它每分鐘的耗氧量為多少個(gè)單位?
(3)若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時(shí)雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗氧量的多少倍?
【答案】(1);(2)466;(3)9
【解析】
試題(1)直接代入求值即可,其中要注意對(duì)數(shù)的運(yùn)算;(2)還是代入求值即可;(3)代入后得兩個(gè)方程,此時(shí)我們不需要解出、 ,只要求出它們的比值即可,所以由對(duì)數(shù)的運(yùn)算性質(zhì),讓兩式相減,就可求得.
試題解析:(1)將,代入函數(shù)式可得:
故此時(shí)候鳥飛行速度為.
(2)將,代入函數(shù)式可得:
即
于是.
故候鳥停下休息時(shí),它每分鐘的耗氧量為466個(gè)單位.
(3)設(shè)雄鳥每分鐘的耗氧量為,雌鳥每分鐘的耗氧量為,依題意可得:
兩式相減可得:,于是.
故此時(shí)雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗氧量的9倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P、M、N分別是正方體的棱,AD,AB上非頂點(diǎn)的任意點(diǎn).
①的外心必在的某一邊上;
②的外心必在的內(nèi)部;
③的垂心必是點(diǎn)A在平面PMN上的射影;
④若線段AP、AM、AN的長(zhǎng)分別為a、b、c,則.其中( ).
A. 只有①、④正確.
B. 只有③、④正確.
C. 只有②、③、④正確.
D. 只有②、③正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為子調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50名,將男性、女性使用微信的時(shí)間分成5組:,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)根據(jù)女性頻率分布直方圖估計(jì)女性使用微信的平均時(shí)間;
(2)若每天再微信超過4個(gè)小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,請(qǐng)你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“微信控”與“性別有關(guān)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且軸,的周長(zhǎng)為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得恒成立?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列,滿足下列條件:①,;②當(dāng)時(shí),滿足:時(shí),,;時(shí),,.
(1)若,,求和的值,并猜想數(shù)列可能的通項(xiàng)公式(不需證明);
(2)若,,是滿足的最大整數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在的三個(gè)內(nèi)角的對(duì)邊分別為,已知向量,且.
(Ⅰ)求角的值;
(Ⅱ)若,求邊的最小值.
(Ⅲ)已知,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對(duì)該單位120名職工進(jìn)行一次業(yè)務(wù)技能測(cè)試,測(cè)試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測(cè)試結(jié)果,將它們編號(hào)后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測(cè)試合格,“×”表示測(cè)試不合格).
表1:
編號(hào)\測(cè)試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項(xiàng)測(cè)試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.
①設(shè)抽取的這10名職工中,每名職工測(cè)試合格的項(xiàng)數(shù)為,根據(jù)上面的測(cè)試結(jié)果統(tǒng)計(jì)表,列出的分布列,并估計(jì)這120名職工的平均得分;
②假設(shè)各名職工的各項(xiàng)測(cè)試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測(cè)試中,測(cè)試難度的計(jì)算公式為,其中為第項(xiàng)測(cè)試難度,為第項(xiàng)合格的人數(shù),為參加測(cè)試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測(cè)試合格人數(shù)及相應(yīng)的實(shí)測(cè)難度如下表(表2):
表2:
測(cè)試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計(jì)量,其中為第項(xiàng)的實(shí)測(cè)難度,為第項(xiàng)的預(yù)測(cè)難度().規(guī)定:若,則稱該次測(cè)試的難度預(yù)測(cè)合理,否則為不合理,測(cè)試前,預(yù)估了每個(gè)預(yù)測(cè)項(xiàng)目的難度,如下表(表3)所示:
表3:
測(cè)試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
預(yù)測(cè)前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測(cè)試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的是( )
A. 先把高二年級(jí)的2000名學(xué)生編號(hào)為1到2000,再從編號(hào)為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為,,的學(xué)生,這樣的抽樣方法是系統(tǒng)抽樣法;
B. 獨(dú)立性檢驗(yàn)中,越大,則越有把握說兩個(gè)變量有關(guān);
C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1;
D. 若一組數(shù)據(jù)1、a、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有個(gè)零件,已知其中有個(gè)正品、個(gè)次品.現(xiàn)隨機(jī)地逐一檢查,則恰在檢查第個(gè)零件時(shí),查出所有次品的概率為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com