【題目】如圖,EA平面ABC,DC∥EA,EA=2DC,F是EB的中點.
(1)求證:DC平面ABC;
(2)求證:DF∥平面ABC.
【答案】(1)證明見解析;(2)證明見解析;
【解析】
(1)根據線面垂直的性質與判定定理即可證明;
(2)取AB中點M,連結CM,FM,證明四邊形DCMF為平行四邊形,由此根據線面平行的判定定理即可證明.
證明:(1)∵EA⊥平面ABC,AB,AC平面ABC,
∴EA⊥AB,EA⊥AC,
又DC∥EA,
∴DC⊥AB,DC⊥AC,
∵ABAC=A,AB、AC平面ABC,
∴DC⊥平面ABC;
(2)取AB中點M,連結CM,FM,
在△ABE中,F,M分別為EB,AB中點,
FM∥EA,且EA=2FM.
又DC∥EA且EA=2DC,
于是DC∥FM,且DC=FM,
∴四邊形DCMF為平行四邊形,
則DF∥CM,CM平面ABC,DF平面ABC,
∴DF∥平面ABC.
科目:高中數學 來源: 題型:
【題目】已知在極坐標系中曲線C的極坐標方程為.
(1)求曲線C與極軸所在直線圍成圖形的面積;
(2)設曲線C與曲線ρsinθ=1交于A,B,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,左頂點為,且,是橢圓上一點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,直線別與軸交于點,求證:在軸上存在點,使得無論非零實數怎樣變化,以 為直徑的圓都必過點,并求出點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐P-ABC中,PA平面ABC,ABAC,且PA=l,AB=AC=2,點D滿足,.
(1)當,求二面角P-BD-C的余弦值;
(2)若直線PC與平面PBD所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知.
(1)討論時,的單調性、極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數a,使的最小值是3,如果存在,求出a的值;若不存在,
請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次比賽中,某隊的六名隊員均獲得獎牌,共獲得4枚金牌2枚銀牌,在頒獎晚會上,這六名隊員與1名領隊排成一排合影,若兩名銀牌獲得者需站在領隊的同側,則不同的排法共有______種.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓:,點,,點在圓上,.
(1)求圓的方程;
(2)直線與圓交于,兩點(點在軸上方),點是拋物線上的動點,點為的外心,求線段長度的最大值,并求出當線段長度最大時,外接圓的標準方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com