5.執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為(  )
A.5B.4C.3D.2

分析 通過(guò)模擬程序,可得到S的取值情況,進(jìn)而可得結(jié)論.

解答 解:由題可知初始值t=1,M=100,S=0,
要使輸出S的值小于91,應(yīng)滿足“t≤N”,
則進(jìn)入循環(huán)體,從而S=100,M=-10,t=2,
要使輸出S的值小于91,應(yīng)接著滿足“t≤N”,
則進(jìn)入循環(huán)體,從而S=90,M=1,t=3,
要使輸出S的值小于91,應(yīng)不滿足“t≤N”,跳出循環(huán)體,
此時(shí)N的最小值為2,
故選:D.

點(diǎn)評(píng) 本題考查程序框圖,判斷出什么時(shí)候跳出循環(huán)體是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.記Sn為等比數(shù)列{an}的前n項(xiàng)和.已知S2=2,S3=-6.
(1)求{an}的通項(xiàng)公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)
(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(2)證明:b2>3a;
(3)若f(x),f′(x)這兩個(gè)函數(shù)的所有極值之和不小于-$\frac{7}{2}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.根據(jù)有關(guān)資料,圍棋狀態(tài)空間復(fù)雜度的上限M約為3361,而可觀測(cè)宇宙中普通物質(zhì)的原子總數(shù)N約為1080,則下列各數(shù)中與$\frac{M}{N}$最接近的是(  )
(參考數(shù)據(jù):lg3≈0.48)
A.1033B.1053C.1073D.1093

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,曲線y=x2+mx-2與x軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1),當(dāng)m變化時(shí),解答下列問(wèn)題:
(1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由;
(2)證明過(guò)A、B、C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=$\sqrt{6}$,AB=4.
(1)求證:M為PB的中點(diǎn);
(2)求二面角B-PD-A的大小;
(3)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax2-ax-xlnx,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,A(-12,0),B(0,6),點(diǎn)P在圓O:x2+y2=50上.若$\overrightarrow{PA}•\overrightarrow{PB}$≤20,則點(diǎn)P的橫坐標(biāo)的取值范圍是[-5$\sqrt{2}$,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案