精英家教網 > 高中數學 > 題目詳情

【題目】某種設備隨著使用年限的增加,每年的維護費相應增加.現對一批該設備進行調查,得到這批設備自購入使用之日起,前五年平均每臺設備每年的維護費用大致如下表:

年份(年)

1

2

3

4

5

維護費(萬元)

1.1

1.5

1.8

2.2

2.4

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)若該設備的價格是每臺5萬元,甲認為應該使用滿五年換一次設備,而乙則認為應該使用滿十年換一次設備,你認為甲和乙誰更有道理?并說明理由.

(參考公式: .)

【答案】(Ⅰ); (Ⅱ)見解析.

【解析】

(Ⅰ)先算出,再由公式分別算和線性回歸方程。

(Ⅱ)分別算出五年與十年的每臺設備的平均費用,費用越小越好。

(1)

,

所以回歸方程為.

(Ⅱ)若滿五年換一次設備,則由()知每年每臺設備的平均費用為:

(萬元),

若滿十年換一次設備,則由()知每年每臺設備的平均費用大概為:

(萬元),

因為,所以甲更有道理.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知公差不為0的等差數列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數列.
(1)求數列{an}通項公式;
(2)設數列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數f(x)為偶函數,且滿足f(x)=f(x+2),f(﹣1)=1,若數列{an}的前n項和Sn滿足2Sn=an+1 , a1= ,則f(a5)+f(a6)=(
A.4
B.2
C.1
D.0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為(0,+∞),f′(x)為f(x)的導函數,且滿足xf′(x)>f(x),則不等式(x﹣1)f(x+1)>f(x2﹣1)的解集是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.

(1)證明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為迎接“國家義務教育均衡發(fā)展”綜合評估,市教育行政部門在全市范圍內隨機抽取了所學校,并組織專家對兩個必檢指標進行考核評分.其中分別表示“學校的基礎設施建設”和“學校的師資力量”兩項指標,根據評分將每項指標劃分為(優(yōu)秀)、(良好)、(及格)三個等級,調查結果如表所示.例如:表中“學校的基礎設施建設”指標為等級的共有所學校.已知兩項指標均為等級的概率為0.21.

(1)在該樣本中,若“學校的基礎設施建設”優(yōu)秀率是0.4,請?zhí)顚懴旅?/span>列聯表,并根據列聯表判斷是否有的把握認為“學校的基礎設施建設”和“學校的師資力量”有關;

師資力量(優(yōu)秀)

師資力量(非優(yōu)秀)

合計

基礎設施建設(優(yōu)秀)

基礎設施建設(非優(yōu)秀)

合計

(2)在該樣本的“學校的師資力量”為等級的學校中,若,記隨機變量,求的分布列和數學期望.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學選取若干大學生志愿者,某記者在該大學隨機調查了1000名大學生,以了解他們是否愿意做志愿者工作,得到的數據如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學生

610

女大學生

90

合計

800

(1)根據題意完成表格;

(2)是否有的把握認為愿意做志愿者工作與性別有關?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表是某廠生產某種產品的過程中記錄的幾組數據,其中表示產量(單位:噸),表示生產中消耗的煤的數量(單位:噸).

(1)試在給出的坐標系下作出散點圖,根據散點圖判斷,在中,哪一個方程更適合作為變量關于的回歸方程模型?(給出判斷即可,不需要說明理由)

(2)根據(1)的結果以及表中數據,建立變量關于的回歸方程.并估計生產噸產品需要準備多少噸煤.參考公式:.

查看答案和解析>>

同步練習冊答案