分析 作出可行域,z=x2+y2表示可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,數(shù)形結(jié)合可得.
解答 解:作出約束條件$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥1}\\{y≥-2}\end{array}\right.$,所對(duì)應(yīng)的可行域(如圖△ABC),
而z=x2+y2表示可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,
數(shù)形結(jié)合可得最大距離為OB,$\left\{\begin{array}{l}{y=-2}\\{x+y=1}\end{array}\right.$可得B(3,-2).
則x2+y2的最大值為:9+4=13.
故答案為:13.
點(diǎn)評(píng) 本題考查簡(jiǎn)單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\frac{1}{π}$ | B. | 1-$\frac{2}{π}$ | C. | 1-$\frac{3}{π}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,-$\frac{1}{2}$) | B. | (0,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,0) | D. | ($\frac{1}{2},1$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com