“m=4”是“直線mx+(1-m)y+1=0和直線3x+my-1=0垂直”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:直線與圓,簡(jiǎn)易邏輯
分析:根據(jù)直線垂直的等價(jià)條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:若直線mx+(1-m)y+1=0和直線3x+my-1=0垂直,
則3m+m(1-m)=0,
即m(4-m)=0,
解得m=0或m=4,
則“m=4”是“直線mx+(1-m)y+1=0和直線3x+my-1=0垂直”的充分不必要條件,
故選:A
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)直線垂直的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公差為整數(shù)的等差數(shù)列,且a1a2=4,a3=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{2 an-1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x+log2
x
9-x
,則f(1)+f(2)+f(3)+…+f(8)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
(
1
3
)x,x>0
f(-x),x<0
,則f(log3
1
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2-2x+2
x-1
(x>1),當(dāng)且僅當(dāng)x=
 
時(shí),f(x)取到最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合.若曲線C1的方程為ρ=sinθ-cosθ,曲線C2的參數(shù)方程為
x=
2
cosα
y=
2
sinα
(α為參數(shù)).
(1)試分別將C1和C2的方程化為直角坐標(biāo)方程和普通方程;
(2)設(shè)A,B分別是曲線C1和C2上的動(dòng)點(diǎn),求A,B之間的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知經(jīng)過(guò)A(-2,0)和點(diǎn)B(1,3a)的直線l1與經(jīng)過(guò)點(diǎn)P(0,-1)和點(diǎn)Q(a,-2a)的直線l2互相垂直,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},首項(xiàng)a1和公差d均為整數(shù),其前n項(xiàng)和為Sn
(Ⅰ)若a1=1,且a2,a4,a9成等比數(shù)列,求公差d;
(Ⅱ)若n≠5時(shí),恒有Sn<S5,求a1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:a2n+1=ta2n+(t-1)anan+1,其中n∈N*(1)若a2-a1=8,a3=a且數(shù)列{an}是唯一的.
①求a的值
②設(shè)數(shù)列{bn}滿足bn=
nan
4(2n+1)2n
,是否存在正整數(shù)m、n(1<m<n),使得b1、bm、bn成等比數(shù)列?若存在,求出所有的m、n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案