(坐標(biāo)系與參數(shù)方程選講選做題)
已知圓的參數(shù)方程為為參數(shù)), 以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為, 則直線截圓所得的弦長是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
(坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系xOy中,直線的參數(shù)方程是(t為參數(shù))。以O(shè)為極點(diǎn),x軸正方向?yàn)闃O軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為,直線與曲線C的交點(diǎn)個(gè)數(shù)為 個(gè)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
(1)(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,和極軸垂直且相交的直線l與圓相交于兩點(diǎn),若,則直線l的極坐標(biāo)方程為____________.
(2)(不等式選做題)不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線的參數(shù)方程為,(為參數(shù)),圓的參數(shù)方程為 ,(為參數(shù)).
(1)求直線和圓的普通方程;
(2)若直線與圓有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的點(diǎn)為極點(diǎn),軸正方向?yàn)闃O軸,且長度單位相同,建立極坐標(biāo)系,得直線的極坐標(biāo)方程為.求直線與曲線交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn)P,Q都在曲線C: (t為參數(shù))上,對(duì)應(yīng)參數(shù)分別為t=與t=2 (0<<2π),M為PQ的中點(diǎn).
(1)求M的軌跡的參數(shù)方程;
(2)將M到坐標(biāo)原點(diǎn)的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l過點(diǎn)P(2,0),斜率為直線l和拋物線y2=2x相交于A、B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求:(1)|PM|; (2)|AB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com