11.集合A={1,2,a},B={2,3},若B?A,則實(shí)數(shù)a的值是(  )
A.1B.2C.3D.2或3

分析 B?A,可得3∈A,即可得出a.

解答 解:∵B?A,∴3∈A,因此a=3.
故選:C.

點(diǎn)評(píng) 本題考查了元素與集合之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知A(x1,y1),B(x2,y2)是拋物線C:x2=2py(p>0)上不同兩點(diǎn).
(1)設(shè)直線l:y=$\frac{p}{4}$與y軸交于點(diǎn)M,若A,B兩點(diǎn)所在的直線方程為y=x-1,且直線l:y=$\frac{p}{4}$恰好平分∠AFB,求拋物線C的標(biāo)準(zhǔn)方程.
(2)若直線AB與x軸交于點(diǎn)P,與y軸的正半軸交于點(diǎn)Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直線AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對(duì)稱,且在區(qū)間[0,π]上是單調(diào)函數(shù),則ω+φ=( 。
A.$\frac{π}{2}$+$\frac{2}{3}$B.$\frac{π}{2}$+2C.$\frac{π}{2}$+$\frac{3}{2}$D.$\frac{π}{2}$+$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={-1,0,2},B={2,a2},若B⊆A,則實(shí)數(shù)a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若($\frac{x}{2}$-$\frac{1}{3x}$)a的展開(kāi)式中只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中常數(shù)項(xiàng)是$\frac{35}{648}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{lnx+ax+1}{x}$.
(1)若對(duì)任意x>0,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1<x2),證明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$p:ab>0;q:\frac{a}+\frac{a}≥2$,則( 。
A.p是q的充分而不必要條件B.p是q的必要而不充分條件
C.p是q的充要條件D.p是q的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)z的共軛復(fù)數(shù)記為$\overline z,i$為虛數(shù)單位,若(1+2i)$\overline z$=4-3i,復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知定點(diǎn)A(-4,0)及橢圓C:x2+3y2=6,直線MN經(jīng)過(guò)橢圓C的右焦點(diǎn),當(dāng)M、N在橢圓C上運(yùn)動(dòng)時(shí),△MNA的面積的最大值為3$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案