設(shè)S=
2
0
xe x2dx(其中e為自然對(duì)數(shù)的底),則S的值為
 
考點(diǎn):定積分,二項(xiàng)式定理的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出被積函數(shù)的原函數(shù),然后分別代入積分上限和積分下限作差后得答案.
解答: 解:
2
0
xex2dx=
1
2
ex2
|
2
0
=
1
2
e4-
1
2

故答案為:
1
2
e4-
1
2
點(diǎn)評(píng):本題考查了定積分,關(guān)鍵是求出被積函數(shù)的原函數(shù),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)加入WTO時(shí),根據(jù)達(dá)成的協(xié)議,若干年內(nèi)某產(chǎn)品市場(chǎng)供應(yīng)量p與關(guān)稅的關(guān)系近似滿足p(x)=2(1-kt)(x-b)2(其中t為關(guān)稅的稅率,且t∈[0,
1
2
],x為市場(chǎng)價(jià)格,b,k為正常數(shù)),當(dāng)t=
1
8
時(shí)的市場(chǎng)供應(yīng)量曲線如圖所示.
(1)根據(jù)圖象,求b,k的值;
(2)設(shè)市場(chǎng)需求量為a,它近似滿足a(x)=22-x,當(dāng)p=a時(shí)的市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格.當(dāng)市場(chǎng)平衡價(jià)格控制在不低于9元時(shí),求關(guān)稅稅率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y>10,xy=1000,求lgx•lgy的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2x-2,x∈{-1,1,2,則f(x)的值域?yàn)?div id="ko3dl0y" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(-3,2),則(
a
+
b
)•
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)閇a,b],其圖象如圖,則f(|x|)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α、β為銳角,sinα=x,cosβ=y,cos(α+β)=-
3
5
,則x與y的關(guān)系式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必經(jīng)過(guò)定點(diǎn)(0,1);
②已知命題p:?x∈R,sinx≤1,則¬p:?x0∈R,sinx0≤1;
③過(guò)點(diǎn)(-1,2)且與直線2x-3y+4=0垂直的直線方程為3x+2y-1=0;
④圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9相切.
其中所有正確命題的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,E、F分別是棱AB、BB1的中點(diǎn),則A1E與CF所成角的余弦值為(  )
A、
1
2
B、
2
2
C、
21
5
D、
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案