7.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,
(1)求函數(shù)f(x)的圖象在點(diǎn)(1,0)處的切線(xiàn)方程;
(2)求函數(shù)f(x)在區(qū)間$[t,t+\frac{1}{e}](t>0)$上的最小值;
(3)對(duì)一切實(shí)數(shù)x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1)的值,求出切線(xiàn)方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論t的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可;
(3)問(wèn)題轉(zhuǎn)化為$2lnx+x+\frac{3}{x}≥a$恒成立,設(shè)$h(x)=2lnx+x+\frac{3}{x}$,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(1)因?yàn)?{f^'}(x)=1×lnx+x•\frac{1}{x}=lnx+1$,
得f′(1)=ln1+1=1,
f(x)的圖象在點(diǎn)(1,0)處的切線(xiàn)方程:y=1×(x-1)+0,
即y=x-1為所求…(4分)
(2)f(x)的定義域?yàn)椋?,+∞),
f′(x)=lnx+1=0時(shí),$x=\frac{1}{e}$,且t>0,所以$t+\frac{1}{e}>\frac{1}{e}$,
當(dāng)$0<t<\frac{1}{e}$時(shí),x在$(t,\frac{1}{e})$時(shí),f′(x)<0,f(x)遞減,
x在$(\frac{1}{e},t+\frac{1}{e})$時(shí)f′(x)>0,f(x)遞增,
所以$f{(x)_{最小值}}=f(\frac{1}{e})=\frac{1}{e}ln\frac{1}{e}=-\frac{1}{e}$;
當(dāng)$t≥\frac{1}{e}$時(shí),x在$[t,t+\frac{1}{e}]$,f′(x)≥0,f(x)遞增,
所以f(x)最小值=f(t)=tlnt…(7分)
于是$f{(x)_{最小值}}=\left\{\begin{array}{l}-\frac{1}{e},0<t<\frac{1}{e}\\ tlnt,\frac{1}{e}≤t\end{array}\right.$…(8分)
(3)x∈(0,+∞)時(shí)2f(x)≥g(x)恒成立,
即2xlnx≥-x2+ax-3恒成立,
即$2lnx+x+\frac{3}{x}≥a$恒成立,設(shè)$h(x)=2lnx+x+\frac{3}{x}$…(10分)
${h^'}(x)=\frac{2}{x}+1-\frac{3}{x^2}=\frac{{{x^2}+2x-3}}{x^2}=\frac{(x+3)(x-1)}{x^2}$=0時(shí)x=-3或1,
又因?yàn)閤∈(0,+∞),當(dāng)x∈(0,1)時(shí),h′(x)<0,h(x)遞減,
x∈(1,+∞)時(shí),h′(x)>0,h(x)遞增,
所以h(x)最小值=h(1)=4,
于是a≤4為所求…(12分)

點(diǎn)評(píng) 本題考查了切線(xiàn)方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列角與α=36°終邊相同的角為(  )
A.324°B.-324°C.336°D.-336°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線(xiàn)l1:ax+2y+6=0和直線(xiàn)l2:x+(a-1)y+a2-1=0
(1)當(dāng)l1⊥l2時(shí),求a的值;
(2)在(1)的條件下,若直線(xiàn)l3∥l2,且l3過(guò)點(diǎn)A(1,-3),求直線(xiàn)l3的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.${({\sqrt{3}x-1})^3}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}$,則(a0+a22-(a1+a32的值為( 。
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知A${\;}_{n}^{2}$=132,則n等于( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1上找一點(diǎn)P,使P點(diǎn)到直線(xiàn)2x-4y-31=0的距離最小,則取得最小值時(shí)點(diǎn)P的坐標(biāo)是(2,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)$f(x)=2\sqrt{3}sin(ωx+\frac{π}{3})(ω>0)$在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若$f({x_0})=\frac{{8\sqrt{3}}}{5}$,且${x_0}∈(-\frac{10}{3},\frac{2}{3})$,求f(x0+1)的值;
(3)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的$\frac{{\sqrt{3}}}{6}$倍,橫坐標(biāo)不變,再將所得圖象各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的ω倍,縱坐標(biāo)不變,最后將所得圖象向右平移$\frac{π}{3}$個(gè)單位,得到y(tǒng)=g(x)的圖象,若關(guān)于x的方程2[g(x)]2-4ag(x)+1-a=0在區(qū)間[0,π]上有兩個(gè)不同解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.求值:cos14°cos59°+sin14°sin121°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.方程$y=-\sqrt{3-{x^2}}$表示的曲線(xiàn)是(  )
A.-個(gè)圓B.一條射線(xiàn)C.半個(gè)圓D.一條直線(xiàn)

查看答案和解析>>

同步練習(xí)冊(cè)答案