【題目】對(duì)于函數(shù),有下列4個(gè)命題:①任取,都有恒成立;②,對(duì)于一切恒成立;③函數(shù)有3個(gè)零點(diǎn);④對(duì)任意,不等式恒成立.則其中所有真命題的序號(hào)是______.
【答案】①③④
【解析】
因?yàn)?/span>,定義域?yàn)?/span>,以長(zhǎng)度為變化區(qū)間的正弦類(lèi)型的曲線(xiàn),且當(dāng)時(shí),后面每個(gè)周期都是前一個(gè)周期振幅的,根據(jù)相應(yīng)性質(zhì)判斷命題即可求得答案.
對(duì)于①,如圖:
任取
當(dāng),
當(dāng),,
,,恒成立
故①正確.
對(duì)于②,
,
故②錯(cuò)誤.
對(duì)于③,的零點(diǎn)的個(gè)數(shù)問(wèn)題,分別畫(huà)出和的圖像
如圖:
和圖像由三個(gè)交點(diǎn).
的零點(diǎn)的個(gè)數(shù)為:.
故③正確.
對(duì)于④,設(shè),
,
令 在,
可得:
當(dāng)時(shí),,,,
若任意,不等式恒成立,
即,可得
求證:當(dāng),,化簡(jiǎn)可得:
設(shè)函數(shù),則
當(dāng)時(shí),單調(diào)遞增,可得
即:
綜上所述,對(duì)任意,不等式恒成立.
故④正確.
故答案為:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,當(dāng)時(shí),解關(guān)于的不等式;
(2)證明:有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn),動(dòng)圓P與圓M相外切,且與直線(xiàn)l相切.設(shè)動(dòng)圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點(diǎn)A,B是E上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線(xiàn)AB恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汕頭市有一塊如圖所示的海岸,,為岸邊,岸邊形成角,現(xiàn)擬在此海岸用圍網(wǎng)建一個(gè)養(yǎng)殖場(chǎng),現(xiàn)有以下兩個(gè)方案:
方案l:在岸邊,上分別取點(diǎn),,用長(zhǎng)度為的圍網(wǎng)依托岸邊圍成三角形(為圍網(wǎng)).
方案2:在的平分線(xiàn)上取一點(diǎn),再?gòu)陌哆?/span>,上分別取點(diǎn),,使得,用長(zhǎng)度為的圍網(wǎng)依托岸邊圍成四邊形(,為圍網(wǎng)).
記三角形的面積為,四邊形的面積為. 請(qǐng)分別計(jì)算,的最大值,并比較哪個(gè)方案好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知曲線(xiàn):和曲線(xiàn):,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線(xiàn)和曲線(xiàn)的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作線(xiàn)段的垂線(xiàn)交曲線(xiàn)于點(diǎn),求線(xiàn)段長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省從2021年開(kāi)始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門(mén)中選兩科,按照等級(jí)賦分計(jì)入高考成績(jī),等級(jí)賦分規(guī)則如下:從2021年夏季高考開(kāi)始,高考政治、化學(xué)、生物、地理四門(mén)等級(jí)考試科目的考生原始成績(jī)從高到低劃分為五個(gè)等級(jí),確定各等級(jí)人數(shù)所占比例分別為,,,,,等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、、五個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)分,等級(jí)轉(zhuǎn)換分滿(mǎn)分為100分.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:
等級(jí) | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過(guò)公式計(jì)算:
其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級(jí)分區(qū)間的最低分和最高分,表示原始分,表示轉(zhuǎn)換分,當(dāng)原始分為,時(shí),等級(jí)分分別為、
假設(shè)小南的化學(xué)考試成績(jī)信息如下表:
考生科目 | 考試成績(jī) | 成績(jī)等級(jí) | 原始分區(qū)間 | 等級(jí)分區(qū)間 |
化學(xué) | 75分 | 等級(jí) |
設(shè)小南轉(zhuǎn)換后的等級(jí)成績(jī)?yōu)?/span>,根據(jù)公式得:,
所以(四舍五入取整),小南最終化學(xué)成績(jī)?yōu)?7分.
已知某年級(jí)學(xué)生有100人選了化學(xué),以半期考試成績(jī)?yōu)樵汲煽?jī)轉(zhuǎn)換本年級(jí)的化學(xué)等級(jí)成績(jī),其中化學(xué)成績(jī)獲得等級(jí)的學(xué)生原始成績(jī)統(tǒng)計(jì)如下表:
成績(jī) | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學(xué)成績(jī)獲得等級(jí)的學(xué)生中任取2名,求恰好有1名同學(xué)的等級(jí)成績(jī)不小于96分的概率;
(2)從化學(xué)成績(jī)獲得等級(jí)的學(xué)生中任取5名,設(shè)5名學(xué)生中等級(jí)成績(jī)不小于96分人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶(hù)主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請(qǐng)問(wèn)各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問(wèn)羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知從1開(kāi)始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,,若,則( )
A.64B.65C.71D.72
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com