【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.

【答案】(Ⅰ)極大值為,無極小值;(Ⅱ)1.

【解析】

()由題意首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)函數(shù)的符號討論原函數(shù)的單調(diào)性,從而可確定函數(shù)的極值;

()結(jié)合題意分離參數(shù),然后構(gòu)造新函數(shù),研究構(gòu)造的函數(shù),結(jié)合零點存在定理找到隱零點的范圍,最后利用函數(shù)值的范圍即可確定整數(shù)m的最小值.

()設(shè),

,

,則;,則;

上單調(diào)遞增,上單調(diào)遞減,

,無極小值.

(),即上恒成立,

上恒成立,

設(shè),則,

顯然,

設(shè),則,故上單調(diào)遞減

,,

由零點定理得,使得,即

時,,則,

時,.

上單調(diào)遞增,在上單調(diào)遞減

,

又由,,則

∴由恒成立,且為整數(shù),可得的最小值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),有下列4個命題:①任取,都有恒成立;②,對于一切恒成立;③函數(shù)3個零點;④對任意,不等式恒成立.則其中所有真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢C交于M,N兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于AB兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰梯形中,的中點,,將沿著翻折成,使平面平面

)求證:;

)求二面角的余弦值;

)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點.

(Ⅰ)求證:平面;

(Ⅱ),,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得

可得曲線C的極坐標(biāo)方程.

(2)由(1)不妨設(shè)M(),,(),

,

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標(biāo)方程為

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標(biāo)方程為

.

(2)由(1)不妨設(shè)M(),,(),

,

,

當(dāng) 時, ,

所以△MON面積的最大值為.

型】解答
結(jié)束】
23

【題目】已知函數(shù)的定義域為

(1)求實數(shù)的取值范圍;

(2)設(shè)實數(shù)的最大值,若實數(shù), , 滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點,且傾斜角為.

(1)寫出曲線的直角坐標(biāo)方程以及點的直角坐標(biāo);

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,的中點.

1)證明;

2)若,

i)求直線與平面所成角的正弦值;

ii)設(shè)平面與側(cè)棱交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象兩條相鄰的對稱軸間的距離為.

(1)求的值;

(2)將函數(shù)的圖象沿軸向左平移個單位長度后,再將得到的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的值.

查看答案和解析>>

同步練習(xí)冊答案