11.函數(shù)$f(x)=2{cos^2}x+cos(2x+\frac{π}{3})-1$,則函數(shù)的最小正周期為π,在[0,π]內(nèi)的一條對稱軸方程是x=$\frac{5π}{12}$,或x=$\frac{11π}{12}$.

分析 利用三角恒等變換化簡函數(shù)的解析式,再利用余弦函數(shù)的周期性以及它的圖象的對稱性,得出結(jié)論.

解答 解:函數(shù)$f(x)=2{cos^2}x+cos(2x+\frac{π}{3})-1$
=cos2x+cos2xcos$\frac{π}{3}$-sin2xsin$\frac{π}{3}$=$\frac{3}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x=$\sqrt{3}$cos(2x+$\frac{π}{6}$),
則函數(shù)的最小正周期為$\frac{2π}{2}$=π.
令2x+$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,結(jié)合x在[0,π]內(nèi),
可得f(x)在[0,π]內(nèi)的一條對稱軸方程是x=$\frac{5π}{12}$,或 x=$\frac{11π}{12}$,
故答案為:π;$x=\frac{5π}{12}$或$x=\frac{11π}{12}$.

點評 本題主要考查三角恒等變換,余弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖一所示,由弧AB,弧AC,弧BC所組成的圖形叫做勒洛三角形,它由德國機械工程專家、機械運動學(xué)家勒洛首先發(fā)現(xiàn)的,它的構(gòu)成如圖二所示,以正三角形ABCd的每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,由三段弧所圍成的曲邊三角形即為勒洛三角形,有一個如圖一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一點是等可能的,則此箭恰好射中三角形ABC內(nèi)部(即陰影部分)的概率為( 。
A.$\frac{\sqrt{3}}{2π-\sqrt{3}}$B.$\frac{\sqrt{3}}{2(π-\sqrt{3}})$C.$\frac{2π-3\sqrt{3}}{2(π-\sqrt{3})}$D.$\frac{2π-2\sqrt{3}}{2π-\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用秦九韶算法計算多項式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4時的值時,運算總次數(shù)為( 。
A.11B.12C.26D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若曲線 C1:y=x2與曲線 C2:y=aex(a≠0)存在公共切線,則a的取值范圍為(-∞,0)∪(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若直線y=3x與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有公共點,則雙曲線的離心率的取值范圍為(  )
A.$(1,\sqrt{10})$B.$(\sqrt{10},+∞)$C.$({1,\sqrt{10}}]$D.$[{\sqrt{10}}\right.,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓M過定點(0,1)且圓心M在拋物線x2=2y上運動,若x軸截圓M所得的弦為|PQ|,則弦長|PQ|等于( 。
A.2B.3
C.4D.與點位置有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有人在路邊設(shè)局,宣傳牌上寫有“擲骰子,贏大獎”.其游戲規(guī)則是這樣的:你可以在1,2,3,4,5,6點中任選一個,并押上賭注m元,然后擲1顆骰子,連續(xù)擲3次,若你所押的點數(shù)在3次擲骰子過程中出現(xiàn)1次,2次,3次,那么原來的賭注仍還給你,并且莊家分別給予你所押賭注的1倍,2倍,3倍的獎勵.如果3次擲骰子過程中,你所押的點數(shù)沒出現(xiàn),那么你的賭注就被莊家沒收.
(1)求擲3次骰子,至少出現(xiàn)1次為5點的概率;
(2)如果你打算嘗試一次,請計算一下你獲利的期望值,并給大家一個正確的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在平行四邊形ABCD中,∠BAD=$\frac{π}{3}$,AB=2,AD=1,若M、N分別是邊AD、CD上的點,且滿足$\frac{MD}{AD}$=$\frac{NC}{DC}$=λ,其中λ∈[0,1],則$\overrightarrow{AN}$•$\overrightarrow{BM}$的取值范圍是( 。
A.[-3,1]B.[-3,-1]C.[-1,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個三角形可分為以內(nèi)切圓半徑為高,以原三角形三條邊為底的三個三角形,類比此方法,若一個三棱錐的體積V=2,表面積S=3,則該三棱錐內(nèi)切球的體積為( 。
A.81πB.16πC.$\frac{32π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

同步練習(xí)冊答案