【題目】已知F1、F2是橢圓的左、右焦點(diǎn),A是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)B也在橢圓上,且滿足O是坐標(biāo)原點(diǎn)),若橢圓的離心率等于

(1)求直線AB的方程;

(2)若三角形ABF2的面積等于,求橢圓的方程.

【答案】(1);(2)

【解析】

試題(1)橢圓的離心率等于,所以,代入橢圓方程得:,又由,從而求點(diǎn),再根據(jù)直線過(guò)原點(diǎn),即可寫出直線的方程;(2)連結(jié),由橢圓的對(duì)稱性可知,再有三角形等底等高知,所以,又由,解得,所以橢圓的方程為

試題解析:(1)由知,由直AB經(jīng)過(guò)原點(diǎn),又由,因?yàn)闄E圓的離心率等于,所以,故橢圓方程

設(shè)Ax,y),由,知x = cAc,y),

代入橢圓方程得

故直線AB的斜率 因此直線AB的方程為

(2)連結(jié)AF1、BF1、AF2、BF2,由橢圓的對(duì)稱性可知,

所以

又由,解得,

故橢圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買2臺(tái)機(jī)器的客戶,推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過(guò)2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過(guò)4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買2臺(tái)這種機(jī)器,F(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺(tái)數(shù)

5

10

20

15

以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過(guò)質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , , 的中點(diǎn).

(1)求證:平面平面

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知拋物線的焦點(diǎn)為,上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.

)求的方程;

)若直線,且有且只有一個(gè)公共點(diǎn),

)證明直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);

的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)試求上的最大值;

2)已知處的切線與軸平行,若存在,使得,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),為定點(diǎn),點(diǎn)的中點(diǎn),動(dòng)點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)過(guò)點(diǎn)的直線交曲線兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線,兩點(diǎn).問(wèn)是否為定值?若是,求的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,,過(guò)垂直于長(zhǎng)軸的直線交橢圓于兩點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)的直線與橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案