【題目】若函數(shù)f(x)=x3﹣3x﹣a有3個不同零點,則實數(shù)a的取值范圍是(
A.(﹣2,2)
B.[﹣2,2]
C.(﹣∞,﹣1)
D.(1,+∞)

【答案】A
【解析】解:設(shè)g(x)=x3 , h(x)=3x﹣a ∵f(x)=x3﹣3x+a有三個不同零點,即g(x)與h(x)有三個交點
∵g'(x)=3x2 , h'(x)=3
當g(x)與h(x)相切時
g'(x)=h'(x),3x2=3,得x=1,或x=﹣1
當x=1時,g(x)=1,h(x)=3﹣a=1,得a=2
當x=﹣1時,g(x)=﹣1,h(x)=﹣3﹣a=﹣1,得a=﹣2
要使得g(x)與h(x)有三個交點,則﹣2<a<2
故選:A.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的極值與導數(shù)的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2≤x<7},B={x|3<x≤10},C={x|a﹣5<x<a}.
(1)求A∩B,A∪B;
(2)若非空集合C(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,其中的中點.

(1)求證:;

(2)求證:面

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=﹣bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(1)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點;
(2)若函數(shù)F(x)=f(x)﹣g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 是定義在R上的奇函數(shù),且f(1)=2.
(1)求實數(shù)a,b并寫出函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,P,Q分別為AB,DA上動點,且△APQ的周長為2,設(shè) AP=x,AQ=y.

(1)求x,y之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)判斷∠PCQ的大小是否為定值?并說明理由;
(3)設(shè)△PCQ的面積分別為S,求S的最小值.

查看答案和解析>>

同步練習冊答案