【題目】已知橢圓的離心率為,橢圓經(jīng)過點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于兩個相異點,證明:面積為定值.

【答案】(1); (2)見解析.

【解析】

1)根據(jù)橢圓的離心率和把過的點代入橢圓方程,根據(jù)得到的式子求出.

2)當(dāng)直線斜率不存在時,易得的面積,當(dāng)直線斜率存在時,設(shè)為,與橢圓相切,得到的關(guān)系,再由直線和橢圓聯(lián)立方程組,得到、

利用弦長公式表示出,再得到的關(guān)系,由的距離,得到的距離,從而計算出的面積.得到結(jié)論為定值.

(1)解:因為的離心率為,

所以

解得.①

將點代入,整理得.②

聯(lián)立①②,得,

故橢圓的標(biāo)準(zhǔn)方程為.

(2)證明:①當(dāng)直線的斜率不存在時,

,由對稱性不妨取

由(1)知橢圓的方程為,所以有.

代入橢圓的方程得

所以 .

②當(dāng)直線的斜率存在時,設(shè)其方程為,

代入橢圓的方程

,

由題意得

整理得.

代入橢圓的方程,

.

設(shè),,

,

所以 .

設(shè),,,則可得.

因為,所以

解得舍去),

所以,從而.

又因為點到直線的距離為,

所以點到直線的距離為

所以 ,

綜上,的面積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,長軸長是短軸長的2倍.

(1)求橢圓的方程;

(2)設(shè)直線經(jīng)過點且與橢圓相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,拋物線上橫坐標(biāo)為的點到焦點的距離為.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;

(Ⅱ)過的直線交拋物線于不同的兩點,交直線于點,直線交直線于點. 是否存在這樣的直線,使得? 若不存在,請說明理由;若存在,求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,定義橢圓的“相關(guān)圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構(gòu)成直角三角形.

(1)求橢圓的方程和“相關(guān)圓”的方程;

(2)過“相關(guān)圓”上任意一點的直線與橢圓交于兩點.為坐標(biāo)原點,若,證明原點到直線的距離是定值,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:,過橢圓右焦點的最短弦長是,且點在橢圓上.

1)求該橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)動點滿足:,其中,是橢圓上的點,直線與直線的斜率之積為,求點的軌跡方程并判斷是否存在兩個定點,使得為定值?若存在,求出定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為0,求的值;

(2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點為頂點,直線為準(zhǔn)線的拋物線.以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線與曲線的極坐標(biāo)方程:

(2)點是曲線上位于第一象限內(nèi)的一個動點,點是直線上位于第二象限內(nèi)的一個動點,且,請求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點M,那么M一定在直線________上.

查看答案和解析>>

同步練習(xí)冊答案