【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免浪費(fèi)能源,某市政府計(jì)劃對(duì)居民用電采用階梯收費(fèi)的方法.為此,相關(guān)部分在該市隨機(jī)調(diào)查了戶居民六月份的用電量(單位:)和家庭收入(單位:萬(wàn)元),以了解這個(gè)城市家庭用電量的情況.
用電量數(shù)據(jù)如下:
.
對(duì)應(yīng)的家庭收入數(shù)據(jù)如下:
.
(Ⅰ)根據(jù)國(guó)家發(fā)改委的指示精神,該市計(jì)劃實(shí)施階階梯電價(jià),使的用戶在第一檔,電價(jià)為元/;的用戶在第二檔,電價(jià)為元/;的用戶在第三檔,電價(jià)為元/,試求出居民用電費(fèi)用與用電量間的函數(shù)關(guān)系;
(Ⅱ)以家庭收入為橫坐標(biāo),電量為縱坐標(biāo)作出散點(diǎn)圖(如圖),求關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù)).
(Ⅲ)小明家的月收入元,按上述關(guān)系,估計(jì)小明家月支出電費(fèi)多少元?
參考數(shù)據(jù):,,,,.
參考公式:一組相關(guān)數(shù)據(jù),,…,的回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為,,其中,為樣本均值.
【答案】(1) .
(2) .
(3) 72.8元.
【解析】分析:(Ⅰ) ,從用電量數(shù)據(jù)中得到第一檔的臨界值為第15個(gè)樣本,即180,第二檔的臨界值為第19個(gè)樣本,即260.從而可得居民用電費(fèi)用與用電量間的函數(shù)關(guān)系;
(Ⅱ)根據(jù)題意,,,代入公式計(jì)算即可;
(Ⅲ)代入回歸直線方程即可.
詳解:(I)因?yàn)?/span>,
所以從用電量數(shù)據(jù)中得到第一檔的臨界值為第15個(gè)樣本,即180,
第二檔的臨界值為第19個(gè)樣本,即260.因此,
所以,
(II)由于,
,
,
所以,
從而回歸直線方程為.
(Ⅲ)當(dāng)時(shí),,
,所以,小明家月支出電費(fèi)72.8元.
溫馨提示:由于學(xué)生手工計(jì)算,難免會(huì)產(chǎn)生這樣或那樣的計(jì)算誤差,望評(píng)卷老師酌情扣分。建議第(Ⅰ)問(wèn)0誤差,第(Ⅱ)問(wèn)誤差控制在±3,第(Ⅲ)問(wèn)0誤差.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當(dāng)x>0時(shí),f(x)≤x;
(Ⅱ)設(shè) ,若g(x)≥0對(duì)x>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2+bx(a為實(shí)常數(shù)).
(1)若a=﹣2,b=﹣3,求f(x)的單調(diào)區(qū)間;
(2)若b=0,且a>﹣2e2 , 求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.05 | |
第2組 | a | 0.35 | |
第3組 | 30 | b | |
第4組 | 20 | 0.20 | |
第5組 | 10 | 0.10 | |
合計(jì) | n | 1.00 |
(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;
(2)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第4組中至少有一名學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)φ(x)= ,a>0
(1)若函數(shù)f(x)=lnx+φ(x),在(1,2)上只有一個(gè)極值點(diǎn),求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對(duì)任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )
A. 若是的極小值點(diǎn),則在區(qū)間上單調(diào)遞減
B. ,使
C. 函數(shù)的圖像可以是中心對(duì)稱(chēng)圖形
D. 若是的極值點(diǎn),則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 + =1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點(diǎn),F(xiàn)到拋物線的準(zhǔn)線l的距離為 .
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設(shè)l上兩點(diǎn)P,Q關(guān)于x軸對(duì)稱(chēng),直線AP與橢圓相交于點(diǎn)B(B異于A),直線BQ與x軸相交于點(diǎn)D.若△APD的面積為 ,求直線AP的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn),且圓心在直線:上.
(1)求圓的方程;
(2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),問(wèn)在直線上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com