【題目】已知事件在矩ABCD的邊CD上隨意取一點P,使得△APB的最大邊是AB發(fā)生的概率為 ,則 =

【答案】
【解析】解:記“在矩形ABCD的邊CD上隨機取一點P,使△APB的最大邊是AB”為事件M,試驗的全部結(jié)果構(gòu)成的長度即為線段CD, 構(gòu)成事件M的長度為線段CD其一半,根據(jù)對稱性,當PD= CD時,AB=PB,如圖.
設(shè)CD=4x,則AF=DP=x,BF=3x,再設(shè)AD=y,
則PB= =
于是 =4x,解得 = ,從而 =
故答案為:

先明確是一個幾何概型中的長度類型,然后求得事件“在矩形ABCD的邊CD上隨機取一點P,使△APB的最大邊是AB”發(fā)生的線段長度,再利用兩者的比值即為發(fā)生的概率 ,從而求出

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于x的實系數(shù)一元二次方程有兩個異號實根的充要條件是什么?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知c>0,設(shè)命題p:函數(shù)ycx為減函數(shù).命題q:當時,函數(shù)恒成立.如果“pq”為真命題,“pq”為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名髙一新生分成水平相同的甲、乙兩個平行班”,每班50.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為成績優(yōu)秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)從乙班隨機抽取2名學生的成績,成績優(yōu)秀的個數(shù)為,求的分布列和數(shù)學期望;

(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認為:“成績優(yōu)秀與教學方式有關(guān).

甲班A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列五個正方體圖形中,是正方體的一條對角線,點MN,P分別為其所在棱的中點,求能得出MNP的圖形的序號(寫出所有符合要求的圖形序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知常數(shù),在矩形ABCD中, ,OAB的中點,點E、FG分別在BC、CD、DA上移動,且,PGEOF的交點(如圖),問是否存在兩個定點,使P到這兩點的距離的和為定值?若存在,求出這兩點的坐標及此定值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)過原點 O 的直線與圓 C : 的一個交點為 P ,點 M 為線段 OP 的中點。
(1)求圓 C 的極坐標方程;
(2)求點 M 軌跡的極坐標方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2+2x+a=0上存在兩點關(guān)于直線l:mx+y+1=0對稱. (Ⅰ)求m的值;
(Ⅱ)直線l與圓C交于A,B兩點, =﹣3(O為坐標原點),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)= .g(x)= ,
(1)求當x<0時,函數(shù)f(x)的解析式;
(2)求g(x)的解析式,并證明g(x)的奇偶性.

查看答案和解析>>

同步練習冊答案