【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

【答案】
(1)解:∵ ,

∴sinC= sinAsinC﹣sinCcosA,

sinA﹣cosA=1,

∴2sin(A﹣ )=1,sin(A﹣ )= ,

∴A﹣ = π,

∴A= ,A=π(舍),

∴A=


(2)解:SABC= ,

∴bc=4,

∵cosA= =

∴b2+c2﹣4=4,


【解析】(1)利用正弦定理把已知等式中的邊轉(zhuǎn)化為角的正弦,化簡(jiǎn)整理可求得sin(A﹣ )的值,進(jìn)而求得A.(2)利用三角形面積公式求得bc的值進(jìn)而根據(jù)余弦定理求得b2+c2的值,最后聯(lián)立方程求得b和c.
【考點(diǎn)精析】本題主要考查了正弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

API

[0,100]

(100,200]

(200,300]

>300

空氣質(zhì)量

優(yōu)良

輕污染

中度污染

重度污染

天數(shù)

17

45

18

20

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元),空氣質(zhì)量指數(shù)API.當(dāng)時(shí),企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)時(shí)造成的經(jīng)濟(jì)損失為,當(dāng)時(shí),造成的經(jīng)濟(jì)損失;當(dāng)時(shí)造成的經(jīng)濟(jì)損失為2000元;

(1)試寫出的表達(dá)式;

(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

P(k2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是棱A1B1 , B1C1的中點(diǎn),O是AC與BD的交點(diǎn),面OEF與面BCC1B1相交于m,面OD1E與面BCC1B1相交于n,則直線m,n的夾角為( )
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知函數(shù).

(1)若曲線處的切線與直線垂直,求的值;

(2)討論函數(shù)的單調(diào)性;若存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x+ )的圖象上各點(diǎn)的橫坐標(biāo)壓縮為原來的 倍(縱坐標(biāo)不變),所得函數(shù)在下面哪個(gè)區(qū)間單調(diào)遞增(
A.(﹣ ,
B.(﹣ ,
C.(﹣ ,
D.(﹣ ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考數(shù)學(xué)試題中共有10道選擇題,每道選擇題都有4個(gè)選項(xiàng),其中有且僅有一個(gè)是正確的.評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選1項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分.”某考生每道題都給出了一個(gè)答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道題可以判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(1)得50分的概率;
(2)得多少分的可能性最大;
(3)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①集合與集合是相等集合;

②不存在實(shí)數(shù),使為奇函數(shù);

③若,且f(1)=2,則;

④對(duì)于函數(shù) 在同一直角坐標(biāo)系中,若,則函數(shù)的圖象關(guān)于直線對(duì)稱;

⑤對(duì)于函數(shù) 在同一直角坐標(biāo)系中,函數(shù)的圖象關(guān)于直線對(duì)稱;其中正確說法是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式的解集為

(1)求a,b的值.

(2)當(dāng)時(shí),解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在實(shí)數(shù),使得關(guān)于的方程有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是()

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案