14.設(shè)函數(shù)f(x)=ax3+3x-1(x∈R),若對于任意的x∈[0,1]都有f(x)≤0成立,則實(shí)數(shù)a的取值范圍是(-∞,-4].

分析 對x討論,當(dāng)x=0,a∈R,
當(dāng)x∈(0,1]時(shí),f(x)=ax3+3x-1≤0可化為a≤$\frac{1}{{x}^{3}}-\frac{3}{{x}^{2}}$
令g(x)=$\frac{1}{{x}^{3}}-\frac{3}{{x}^{2}}$,利用導(dǎo)數(shù)求出g(x)最小值即可.

解答 解:若x=0,則不論a取何值,f(x)≤0都成立;
當(dāng)x∈(0,1]時(shí),f(x)=ax3+3x-1≤0可化為:a≤$\frac{1}{{x}^{3}}-\frac{3}{{x}^{2}}$
令g(x)=$\frac{1}{{x}^{3}}-\frac{3}{{x}^{2}}$,g′(x)=$\frac{3(2x-1)}{{x}^{4}}$
所以g(x)在區(qū)間(0,$\frac{1}{2}$]上單調(diào)遞減,在區(qū)間[$\frac{1}{2}$,1]上單調(diào)遞增,
因此g(x)min=g($\frac{1}{2}$)=-4,從而a≤-4;
即有實(shí)數(shù)a的取值范圍為(-∞,-4].
 故答案為:{-∞,-4]

點(diǎn)評 本題考查不等式恒成立問題,解題時(shí)要認(rèn)真審題,分離參數(shù)法是處理恒成立的常見方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{m}$=1的一個(gè)焦點(diǎn)在直線x+y=5上,則雙曲線的漸近線方程為( 。
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{2\sqrt{2}}{3}$xD.y=±$\frac{3\sqrt{2}}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若圓(x-1)2+(y+1)2=r2上有且只有兩個(gè)點(diǎn)到直線x-y+1=0的距離等于$\frac{{\sqrt{2}}}{2}$,則半徑r的取值范圍是( 。
A.$(\sqrt{2},2\sqrt{2}]$B.$(\sqrt{2},2\sqrt{2})$C.$[\sqrt{2},2\sqrt{2})$D.$[\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b∈R,則“$log_2^a>log_2^b$”是“2a-b>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}中的公差是d,且d<0,ai∈{1,-2,3,-4,5}(i=1,2,3),在數(shù)列{bn}中,b1=1,點(diǎn)Bn(n,bn)在函數(shù)g(x)=a•2x的圖象上運(yùn)動(dòng),其中a是與x無關(guān)的常數(shù)
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知圓C:(x-a)2+y2=1,若直線l:y=x+a與圓C有公共點(diǎn),且點(diǎn)A(1,0)在圓C內(nèi)部,則實(shí)數(shù)a的取值范圍是$(0,\frac{{\sqrt{2}}}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a>0,b>0,且a+b=1.
(1)若ab<m恒成立,求m的取值范圍;
(2)若$\frac{4}{a}$+$\frac{1}$≥|2x-1|-|x+2|恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)x∈R,則“|x+1|<1”是“x2+x-2<0”的( 。l件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.分別根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點(diǎn)為$F(\sqrt{5}\;,\;0)$,離心率e=$\frac{\sqrt{5}}{2}$;
(2)實(shí)軸長為4的等軸雙曲線.

查看答案和解析>>

同步練習(xí)冊答案