與向量
a
=(
3
-1,
3
+1)夾角角為
π
4
的單位向量是( 。
A、(-
1
2
,
3
2
)或(
3
2
1
2
B、(-
1
2
,-
3
2
)或(
1
2
,-
3
2
C、(-
1
2
,-
3
2
)或(-
1
2
3
2
D、(
1
2
,
3
2
)或(-
3
2
1
2
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:設(shè)出單位向量
b
=(x,y),列出方程組
|
b
|=1
a
b
|
a
|×|
b
|
=cos
π
4
,求出解即可.
解答: 解:設(shè)
b
=(x,y),則
|
b
|=1
a
b
|
a
|×|
b
|
=cos
π
4
,
x2+y2=1
(
3
-1)x+(
3
+1)y
(
3
-1)
2
+(
3
+1)
2
=
2
2
,
化簡(jiǎn)得
x2+y2=1
(
3
-1)x+(
3
+1)y=2
,
解得
x=-
1
2
y=
3
2
,或
x=
3
2
y=
1
2
,
b
=(-
1
2
3
2
),或
b
=(
3
2
,
1
2
).
故選:A.
點(diǎn)評(píng):本題考查了平面向量的應(yīng)用問(wèn)題,解題時(shí)應(yīng)設(shè)出向量的坐標(biāo)表示,列方程組求解,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量的分布列為P(X=k)=
c
2k
(k=1,2,3,4),則常數(shù)c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:x2+(y-4)2=4,點(diǎn)P是直線l:x-2y=0上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓M的切線pa、PB,切點(diǎn)為A、B.
(Ⅰ)當(dāng)切線PA的長(zhǎng)度為2
3
時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)若△PAM的外接圓為圓N,試問(wèn):當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過(guò)定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(Ⅲ)求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a-c=
6
6
b,sinB=
6
sinC.
(Ⅰ)求cosA的值;
(Ⅱ)求cos(2A-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f (x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)求f(x);
(2)若函數(shù)g(x)=
1+ax-m•bx
在x∈(-∞,1]時(shí)有意義,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,“sinA>
3
2
”是“A>
π
3
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=sin(2x-
π
3
)
的圖象,可以將函數(shù)y=sin2x圖象經(jīng)何種變換得到( 。
A、右移
π
6
單位
B、右移
π
3
單位
C、左移
π
6
單位
D、左移
π
3
單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2-2x+3在區(qū)間[-1,2]上的值域?yàn)椋ā 。?/div>
A、[2,3]
B、[3,6]
C、[2,6]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)的最小正周期為π.且當(dāng)x∈[-
π
2
,0)
時(shí),f(x)=sinx,則f(-
3
)
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案