18.已知0<x<1,0<y<1,
求證$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等號(hào)成立的條件.

分析 依題意,作圖如下,利用兩點(diǎn)間的距離公式可知|PO|=$\sqrt{{x}^{2}+{y}^{2}}$,|PA|=$\sqrt{(1-x)^{2}+{y}^{2}}$,|PB|=$\sqrt{(1-x)^{2}+(1-y)^{2}}$,|PC|=$\sqrt{{x}^{2}+(1-y)^{2}}$,利用三角不等式可證|PO|+|PB|+|PA|+|PC|≥2$\sqrt{2}$

解答 證明:∵0<x<1,0<y<1,設(shè)P(x,y),A(1,0),B(1,1),C(0,1),如圖:
則|PO|=$\sqrt{{x}^{2}+{y}^{2}}$,|PA|=$\sqrt{(1-x)^{2}+{y}^{2}}$,|PB|=$\sqrt{(1-x)^{2}+(1-y)^{2}}$,|PC|=$\sqrt{{x}^{2}+(1-y)^{2}}$,
∵|PO|+|PB|≥|BO|=$\sqrt{2}$,|PA|+|PC|≥|AC|=$\sqrt{2}$
∴|PO|+|PB|+|PA|+|PC|≥2 (當(dāng)且僅當(dāng)點(diǎn)P為正方形的對(duì)角線AC與OB的交點(diǎn)是取等號(hào)),
即x=y=$\frac{1}{2}$時(shí)取等號(hào).
∴$\sqrt{{x}^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+(1-y)^{2}}$+$\sqrt{(1-x)^{2}+{y}^{2}}$+$\sqrt{(1-x)^{2}+(1-y)^{2}}$$≥2\sqrt{2}$.

點(diǎn)評(píng) 本題考查不等式的證明,考查作圖能力,突出考查兩點(diǎn)間的距離公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求證不等式:xlnx>-x2+2x-1-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)已知a,b,c>0,求證:$\frac{{a}^{2}}+\frac{^{2}}{c}+\frac{{c}^{2}}{a}$≥a+b+c;
(2)已知a>0,b>0,a+b=1,求證:$\frac{1}{a}+\frac{1}+\frac{1}{ab}≥8$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.以拋物線y2=4x的焦點(diǎn)為焦點(diǎn),以直線y=±x為漸近線的雙曲線標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{\frac{1}{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.利用數(shù)學(xué)歸納法證明$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n∈N*,且n≥2)時(shí),第二步由k到k+1時(shí)不等式左端的變化是( 。
A.增加了$\frac{1}{2k+1}$這一項(xiàng)
B.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$兩項(xiàng)
C.增加了$\frac{1}{2k+1}$和$\frac{1}{2k+2}$兩項(xiàng),同時(shí)減少了$\frac{1}{k}$這一項(xiàng)
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,拋物線E:y2=2px(p>0)的焦點(diǎn)與F2重合,A為曲線C與E的一個(gè)焦點(diǎn),|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1為銳角.
(1)求橢圓C和拋物線E的方程;
(2)若動(dòng)點(diǎn)M在橢圓C上,動(dòng)點(diǎn)N在直線l:y=2$\sqrt{3}$上,若OM⊥ON,探究原點(diǎn)O到直線MN的距離是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,點(diǎn)P(-m2,3)在拋物線y2=mx的準(zhǔn)線上,則實(shí)數(shù)m=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知拋物線x2=2py(p>0)的準(zhǔn)線經(jīng)過(guò)橢圓$\frac{y^2}{2}+{x^2}$=1的一個(gè)焦點(diǎn),則拋物線焦點(diǎn)坐標(biāo)為( 。
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若α∈(0,π),且sinα+2cosα=2,則tan$\frac{α}{2}$=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案