【題目】變量、滿足約束條件,若目標(biāo)函數(shù)(其中)僅在處取得最大值,則的取值范圍為__________.

【答案】

【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,比較直線與直線的斜率的大小關(guān)系,利用的幾何意義,即可得到結(jié)論.

作出不等式組所表示的可行域如下圖所示:

化目標(biāo)函數(shù)為直線的斜截式得,則為直線軸上的截距,

,則直線的斜率為.

直線的斜率為,下面討論直線與直線斜率的大小.

①當(dāng)時(shí),即時(shí),平移直線,可知當(dāng)該直線經(jīng)過可行域頂點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,合乎題意;

②當(dāng)時(shí),即當(dāng)時(shí),平移直線,可知當(dāng)該直線與直線重合時(shí),該直線在軸上的截距最大,此時(shí)取最大值,不合乎題意;

③當(dāng)時(shí),即當(dāng)時(shí),平移直線,可知當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,不合乎題意.

綜上所述,實(shí)數(shù)的取值范圍是.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)處的切線方程;

2)若不等式對(duì)任意的都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),直線與拋物線交于不同兩點(diǎn)、,直線與拋物線的另一交點(diǎn)分別為兩點(diǎn)、,連接,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),連接

1)證明:;

2)若的面積,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù))

(1)若直線為曲線的一條切線,求實(shí)數(shù)的值;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)設(shè),若在定義域上有極值點(diǎn)(極值點(diǎn)是指函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段、、、分成了五組,其頻率分布直方圖如下圖所示,參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.

年齡(單位:歲)

保費(fèi)(單位:元)

1)求頻率分布直方圖中實(shí)數(shù)的值,并求出該樣本年齡的中位數(shù);

2)現(xiàn)分別在年齡段、、、中各選出人共人進(jìn)行回訪.若從這人中隨機(jī)選出人,求這人所交保費(fèi)之和大于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請(qǐng)問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.

1)試用含有的式子表示,并討論的單調(diào)性;

2)對(duì)于函數(shù)圖象上的不同兩點(diǎn),如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在跟隨切線”.特別地,當(dāng)時(shí),又稱存在中值跟隨切線”.試問:函數(shù)上是否存在兩點(diǎn)使得它存在中值跟隨切線,若存在,求出的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當(dāng)直線AD與平面BCD所成角為時(shí),直線AC與平面ABD所成角的正弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江南某濕地公園內(nèi)有一個(gè)以為圓心,半徑為20米的圓形湖心洲.該湖心洲的所對(duì)兩岸近似兩條平行線,且兩平行線之間的距離為70米.公園管理方擬修建一條木棧道,其路線為(如圖,右側(cè)).其中,與圓相切于點(diǎn),米.設(shè),滿足

1)試將木棧道的總長(zhǎng)表示成關(guān)于的函數(shù),并指出其定義域;

2)求木棧道總長(zhǎng)的最短長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案