給定雙曲線方程,過點(diǎn)能否存在直線.使與所給雙曲線交于兩點(diǎn),且為線段的中點(diǎn),若存在,求出它的方程;若不存在,請說明理由.

不存在


解析:

假設(shè)直線存在,設(shè),,

      

       ①-②并將③,④,⑤代入可得

       直線的方程為,即

       由,此時(shí)無交點(diǎn),不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定雙曲線x2-
y22
=1

(1)過點(diǎn)A(2,1)的直線L與所給的雙曲線交于兩點(diǎn)P1及P2,求線段P1P2的中點(diǎn)P的軌跡方程.
(2)過點(diǎn)B(1,1)能否作直線m,使m與所給雙曲線交于兩點(diǎn)Q1及Q2,且點(diǎn)B是線段Q1Q2的中點(diǎn)?這樣的直線m如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)已知中心的坐標(biāo)原點(diǎn),以坐標(biāo)軸為對稱軸的雙曲線C過點(diǎn)Q(2,
3
3
)
,且點(diǎn)Q在x軸上的射影恰為該雙曲線的一個(gè)焦點(diǎn)F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個(gè)焦點(diǎn)F作與x軸不垂直的任意直線l”交橢圓于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線E,過該圓錐曲線焦點(diǎn)F的弦AB,AB的垂直平分線與焦點(diǎn)所在的對稱軸的交點(diǎn)M,AB的長度與F、M兩點(diǎn)間距離的比值.試類比上述命題,寫出一個(gè)關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定雙曲線x2-
y22
=1
,過點(diǎn)B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點(diǎn),且點(diǎn)B是線段PQ的中點(diǎn)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定雙曲線x2=1,過點(diǎn)A(2,1)的直線l與所給雙曲線交于P1、P2兩點(diǎn),求線段P1P2中點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案